ECONOMIC DESIGN
of METAL STRUCTURES

József Farkas - Károly Jármaj
Economic Design of Metal Structures

József Farkas
Károly Jármaj
University of Miskolc, Hungary

Millpress
Millpress Rotterdam Netherlands 2003
Table of contents

ABOUT THE AUTHORS XI
LIST OF SYMBOLS XIII
INTRODUCTION 1
ACKNOWLEDGEMENT 5

1 MATHEMATICAL OPTIMIZATION METHODS 7
1.1 Introduction 8
1.2 The genetic algorithm 8
1.2.1 Principle of the genetic algorithm 8
1.2.2 Operators of the genetic algorithm 11
1.3 The Differential evolution technique 14
1.4 The particle swarm algorithm 15
1.4.1 Description of the particle swarm algorithm 17
1.4.2 The three methods 18
1.5 The Leap-frog method 19
1.5.1 The basic dynamic model 19
1.5.2 LFOP: Basic algorithm for unconstrained problems 20
1.5.3 LFOPC: Modification for constrained problems 20

2 COST CALCULATIONS 21
2.1 Introduction 22
2.2 Cost elements 22
2.2.1 Material cost 22
2.2.2 Fabrication cost 22
2.2.2.1 Fabrication times for welding 30
2.2.2.2 Fabrication times of post-welding treatments 31
2.2.2.3 Time for flattening plates 31
2.2.2.4 Surface preparation time 31
2.2.2.5 Painting time 31
2.2.2.6 Plate cutting and edge grinding times 33
2.2.2.7 Times of hand cutting and machine grinding of strut ends 33
2.2.2.8 Total cost function 34
2.3 Numerical examples 34
2.3.1 Welded box beam 38
2.3.2 Welded stiffened plate 42
2.3.3 Conclusions
4.3.1 Member forces in function of H/a
4.3.2 Check of profiles for $w=0.85333$ and 1.3
4.3.3 Check of joints for eccentricity
4.3.4 Check for chord plastification
4.3.5 Comparison of masses and costs
4.4 Optimum fatigue design of a uniplanar CHS truss
4.4.1 Introduction
4.4.2 Problem formulation
4.4.3 Design constraints
4.4.4 The cost function
4.4.5 Mathematical optimization and results
4.4.6 Conclusions
4.5 Height optimization of a triangular CHS truss
4.5.1 Introduction
4.5.2 Problem formulation
4.5.3 Calculation of member forces
4.5.4 Determination of member groups
4.5.5 Design constraints
4.5.6 The cost function
4.5.7 Mathematical minimization and results
4.5.8 Conclusions

5 SANDWICH STRUCTURES
5.1 Introduction
5.2 Welded cellular plates for ship deck panels
5.2.1 Introduction
5.2.2 The cost function
5.2.3 The design constraints
5.2.4 The optimization procedure
5.2.5 Conclusions
5.3 Five-layer sandwich beams
5.3.1 Introduction
5.3.2 Bending theory of sandwich beams with thick faces
5.3.3 The loss factor of three-layer sandwich beams
5.3.4 Objective function and constraints
5.3.5 Numerical data and results
5.3.6 Conclusions

6 FRAMES
6.1 Introduction
6.2 A frame constructed from welded I-bars
6.2.1 Introduction
6.2.2 Stress constraint for a column
6.2.3 Local buckling constraint for the column web
6.2.4 Stress constraint for the beam
6.2.5 Local buckling constraint for the beam web
6.2.6 Local buckling constraint for flanges
6.2.7 Computational result
6.2.8 Conclusions
6.3 A welded tubular frame
6.3.1 Problem formulation
6.3.2 The cost function

Table of contents
6.3.3 Design constraints 159
6.3.4 Numerical data 163
6.3.5 Optimization and results 164
6.3.6 Conclusions 165
6.4 Cost comparison of bolted and welded frame joints 166
6.4.1 Introduction 166
6.4.2 The structural model 162
6.4.3 Design of the beam with welded beam-to-column connections 169
6.4.4 Calculation of rotational stiffness h_i 169
6.4.5 Calculation of stiffness coefficients 169
6.4.6 Cost calculation using suggestions of The Steel Construction Institute (UK) 172
6.4.7 Cost calculation using South African data 174
6.4.8 Conclusions 176

7 WELDED STIFFENED PLATES 177
7.1 Introduction 177
7.2 Uniaxially compressed plates with flat, L- or trapezoidal stiffeners 178
7.2.1 Design constraints 179
7.2.2 Formulae for different stiffener shapes 183
7.2.3 Numerical example 186
7.2.4 Conclusions 188
7.3 Square plates subject to uniform normal load 188
7.3.1 Residual welding stresses and distortions 188
7.3.2 Numerical example 190
7.4 Square plates stiffened by edge-parallel or diagonal grid of flat ribs 194
7.4.1 Edge-parallel grid of ribs 194
7.4.2 Diagonal grid of ribs 198
7.4.3 Conclusions 199
7.5 Stiffened plates loaded by hydrostatic normal pressure 200
7.5.1 Introduction 200
7.5.2 Optimum position of horizontal stiffeners 201
7.5.3 Design of stiffeners 203
7.5.4 Numerical example 204
7.5.5 Comparison with vertical stiffeners 206
7.5.6 Conclusions 208
7.6 Longitudinally stiffened plates subject to uniaxial compression and normal load 208
7.6.1 Geometric characteristics of the stiffened plate 209
7.6.2 Calculation of the deflection due to compression and lateral pressure 210
7.6.3 Deflection due to shrinkage of longitudinal welds 211
7.6.4 The stress constraint 212
7.6.5 Numerical data 213
7.6.6 The optimization procedure and results 213
7.6.7 Conclusions 214

8 WELDED STIFFENED CYLINDRICAL SHELLS 215
8.1 Introduction 215
8.2 Thickness design of axially compressed unstiffened shells with circumferential welds 215
8.2.1 Introduction 215
8.2.2 Basic formulae for thermal impulse during welding 216
8.2.3 Differential equation of local shell deformation 217
8.2.4 Solution of the differential equation 218
8.2.5 Buckling strength and minimum required thickness according to ECCS 220

VIII Economic Design of Metal Structures © Millpress 2003
8.2.6 Numerical examples 222
8.2.7 Conclusions 223
8.3 Minimum cost design of a ring-stiffened axially compressed cylindrical shell 224
 8.3.1 Buckling strength of ring-stiffened axially compressed shells 224
 8.3.2 Numerical example 225
 8.3.3 Cost calculation 226
 8.3.4 Conclusions 229
8.4 Minimum cost design of ring-stiffened shells subject to external pressure 229
 8.4.1 Introduction 229
 8.4.2 Geometrical characteristics 230
 8.4.3 Design constraints 231
 8.4.4 Cost function 232
 8.4.5 Optimization and results 234

9 STEEL BRIDGE DECKS 237
 9.1 Introduction 237
 9.2 The Pelikan-Esslinger method 238
 9.2.1 Deck plates with open ribs 239
 9.2.2 Deck plates with closed ribs 240
 9.2.3 Effective width of stiffened deck plate 241
 9.3 Economic design of bridge deck with open ribs 243
 9.3.1 Flexible floor beams 245
 9.3.2 Bending moment modification at midspan of ribs 247
 9.3.3 Bending moment modification at floor-beam 249
 9.3.4 Loading 250
 9.3.5 Constraints 250
 9.3.5.1 Stress constraints 251
 9.3.5.2 Stability constraints 253
 9.3.5.3 Fatigue constraints 254
 9.3.5.4 Deflection constraint 255
 9.3.6 Fabrication cost calculations 255
 9.3.7 Numerical example 256
 9.4 Economic design of steel bridge decks with closed ribs 257
 9.4.1 The live load considered for highway bridges 257
 9.4.2 The bending and torsional stiffness of stiffeners 257
 9.4.3 The moment of inertia of crossbeams 259
 9.4.4 The bending moment in stiffeners at midspan 260
 9.4.5 The bending moment in a crossbeam at midspan 261
 9.4.6 Fatigue constraint for stiffeners 262
 9.4.7 Fatigue constraint for crossbeams 262
 9.4.8 Deflection constraints 263
 9.4.9 Local buckling constraint for stiffeners 263
 9.4.10 Shear buckling constraint for crossbeam web 263
 9.4.11 Frequency constraints 264
 9.4.12 Size limitations 264
 9.4.13 Fabrication times for welding 264
 9.4.14 Size limitations 269
 9.4.15 Results and conclusions 270

10 A TRUCK FLOOR WELDED FROM ALUMINIUM ALLOY PROFILES 273
 10.1 Introduction 273
 10.2. Load cases 273

Table of contents IX
10.2.1 Loads in the horizontal floor position
10.2.2 Loads on the distorted floor
10.3 Geometric characteristics of cross members
10.4 Design constraints
 10.4.1 Constraints on fatigue stress range for horizontal floor position
 10.4.2 Constraint on fatigue stress range for distorted floor position
 10.4.3 Constraints on local buckling of profiles
 10.4.4 Fabrication constraints: size limitations
10.5 Optimization characteristics and results
10.6 Mass savings
10.7 Cost savings
10.8 Conclusions

11 A WELDED PUNCH PRESS FOR LIGHT INDUSTRY
11.1 Introduction
11.2 Constraints on stiffness and fatigue stress range
11.3 Verification of the original table beam
 11.3.1 Local deflection of the upper flange plate
 11.3.2 Deflection of the whole box beam
 11.3.3 Fatigue of welded joints
 11.3.4 Local deformation of inner stiffeners in the upper flange
 11.3.5 Outer stiffeners of the upper flange
 11.3.6 Cost calculation
11.4 Optimum design of a new structural version
 11.4.1 Thickness of the upper flange plate t_0
 11.4.2 Design of thicknesses t_{w1} and t_{w2}
 11.4.3 Thicknesses of inner stiffeners t_1 and t_2
 11.4.4 Thicknesses of outer stiffeners t_{w3} and t_1
 11.4.5 Cost calculation
11.5 Conclusions

12 BUNKERS CONSTRUCTED FROM WELDED STIFFENED PLATES
12.1 Introduction
12.2 Optimum positions and number of horizontal stiffeners of bin walls
12.3 Optimum number of horizontal stiffeners of hopper walls
12.4 Optimum design of transition beams
12.5 Vertical edge beams of the bin
12.6 Design of columns
12.7 Calculations of the total cost of the bunker of $H/a = 1$
12.8 The optimum H/a-ratio
12.9 Conclusions

APPENDIX TO CHAPTER 1
REFERENCES
NAME INDEX
SUBJECT INDEX