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ABSTRACT 
Heat transfer characteristics of a circular 

cylinder exposed to an oscillating flow are 
investigated numerically using the commercial 
software package Ansys Fluent based on the finite 
volume method (FVM). For in-line oscillation the 
influence of oscillation amplitude and temperature 
are analyzed at Reynolds number 120 and for 
frequency ratio 0.8 in the lock-in domain. For 
transverse motion the influence of temperature on 
force coefficients and heat transfer is investigated 
for Re=100, 120, 140, 160 and 180 and at four 
oscillation amplitude values at frequency ratio 0.8. 
Force coefficients, mechanical energy transfer and 
heat transfer are investigated for these cases. 

Keywords: heat transfer, heated cylinder, in-line 
oscillation, low Reynolds number, Nusselt 
number, transverse oscillation 

NOMENCLATURE  
a0            [-] cylinder acceleration,  
   nondimensionalised by mU~ 2/ d  
A [-] amplitude of oscillation, 

nondimensionalised by d 
CD [-] drag coefficient 
CL [-] lift coefficient 
d [m] cylinder diameter 
E [-] mechanical energy transfer 
f [-] oscillation frequency, 

nondimensionalised by mU~ / d 
fv [1/s] vortex shedding frequency 
g [m/s2] acceleration due to gravity 
h [W/(m2K)] local convective heat transfer 

coefficient 
i, j [-] unit vectors in x and y directions 
k [W/(mK)] thermal conductivity of the fluid 
Nu [-] Nusselt number, Nu=h d/k 
P [-] a period of a vortex shedding, 1/f 
q  [W/m2] heat flux 

r [-] radius, nondimensionalised by d 
Ri [-] Richardson number, 

  2~/~~
mw UTTdgRi    

Re [-] Reynolds number, Re= mU~  d/ υ 
St [-] nondimensional vortex shedding 

frequency, St=fv d/ mU~  
t [-] time, nondimensionalised by 
   d/ mU~  

T~  [K] absolute temperature 
T [-] nondimensional temperature, 
        TTTT w

~~~~  
T* [-] temperature ratio, Tw / T∞ 

mU~  [m/s] time-mean free stream velocity 
v [-] free stream velocity vector, 
   nondimensionalised by mU~  
β [1/K] thermal expansion coefficient 
υ [m2/s] kinematic viscosity 
 
Subscripts and Superscripts 
eff effective 
f film 
fb fixed body 
m time-mean for free stream velocity 
rms root-mean-square value 
x, y components in x and y directions 
w wall 
0 for cylinder motion 
∞ far from the cylinder 

1. INTRODUCTION 
Flow around cylinders, always a topic of 

interest, becomes more complicated when 
oscillation is present, and when heating effects are 
involved. Such situations occur, for instance, with 
tube bundles of heat exchangers or hot wire 
anemometers. 

Oscillation commonly occurs in elastically 
supported structures in wind or under water, 
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especially oscillation transverse to the main stream. 
The flow past a circular cylinder oscillating 
transversely has been studied extensively, even at 
low Reynolds numbers. Williamson and Roshko [1] 
experimentally investigated the wake patterns 
behind an oscillating cylinder at low Reynolds 
numbers. Lu and Dalton [2] numerically simulated 
the flow over an oscillating cylinder at Re=185 to 
reproduce the experimental results of Gu et al. [3].  

In-line oscillation has been studied 
experimentally and numerically. Low Reynolds 
number studies include [4], investigating a broad 
frequency ratio range numerically at Re=200, 
finding vortex switches. A low-Reynolds number 
numerical study identified vortex switches for in-
line oscillation against oscillation amplitude 
Baranyi [5] and against frequency ratio ranging 
from 0.76 to 0.94 [6]. At some critical parameter 
values, flow pattern switched into a mirror image. 
An experimental study using in-line oscillatory low 
Reynolds flow reports on particle image 
velocimetry measurements obtained in the forced 
wake of a circular cylinder in a free stream flow 
with periodic velocity oscillations superimposed 
upon it [7]. This case is kinematically equivalent to 
that of a cylinder forced to oscillate in-line with a 
steady uniform flow.  

Another numerical study for in-line cylinder 
motion at Re=200 and frequency ratio 1 is Mureithi 
et al. [8]. A low order discrete model was developed 
based on symmetry-equivariance theory. The 
resulting simple model was found to capture the 
observed wake dynamics, predicting the sequence 
of bifurcations found in numerical computations.   

For flows over a heated cylinder the fluid 
properties vary with temperature. This has a 
significant effect on flow characteristics, especially 
for the in-line and transverse cylinder motion. 
Karanth et al. [9] numerically investigated the 
effects of in-line and of transverse oscillation of the 
cylinder for Re=200 and concluded that the heat 
transfer rate from the oscillating cylinder increased 
with increasing of velocity amplitude for both 
motions. Cheng et al. [10] adopted the same 
numerical method to study the effect of transverse 
oscillation on flow patterns and on heat transfer 
from a cylinder. Their results indicated that the heat 
transfer increased remarkably as the flow 
approached the lock-in regime. 

The main purpose of the present study is to 
investigate the effect of cylinder temperature and 
oscillation amplitude on the heat transfer and 
mechanical energy transfer E between the fluid and 
the cylinder at the frequency ratio of 0.8 in the lock-
in domain. To the best knowledge of the authors the 
mechanical energy transfer has been investigated 
for unheated cylinders only [11]. In this study the 
mechanical energy transfer is also investigated for a 
heated cylinder for in-line and transverse motions. 

For in-line flow oscillation the influence of 
oscillation amplitude on heat transfer is analysed for 
a single Reynolds number. Karanth et al. [9] also 
investigated heat transfer (Nusselt number), but at 
only the three oscillation amplitude values of 0, 
0.25 and 0.5 for in-line motion, while we 
investigated over 80 oscillation amplitude values at 
two temperature ratios. For transverse oscillation 
the force coefficients, E and Nusselt number Nu 
versus Reynolds number are investigated at four 
oscillation amplitudes and five Re values.  

2. NUMERICAL METHOD 
The main set of simulations was carried out 

using Ansys Fluent commercial software based on 
the finite volume method (FVM). The two-
dimensional (2D), unsteady, laminar, segregated 
solver is used to solve the incompressible 
oscillatory flow for the collocated grid arrangement. 
The second order upwind scheme was used to 
discretise the convective terms in the momentum 
equations. The semi-implicit method for the 
pressure linked equations (SIMPLE) scheme is 
applied for solving the pressure-velocity coupling. 

The physical domain is illustrated in Figure 1. 
The inner circle represents the cylinder surface with 
diameter d, the outer circle the far field with 
diameter d∞. The origin of the Cartesian coordinates 
x, y is located in the centre of the cylinder and the 
positive x-axis is directed downstream. The 
accuracy of the computed results depends on the 
computational mesh, the time step, the size and 
shape of the computational domain. For uniform 
flow past an unheated stationary circular cylinder 
the effect of domain size, mesh, and time step was 
investigated to determine a combination at which 
the solution is roughly parameter independent [12]. 
In [13] computational results are compared with 
those of several studies, finding very good 
agreement.  

 

Figure 1. Computational domain  

In this study the computational domain is 
characterised by d∞/d=180 with mesh points of 
361x298 (peripheral x radial), respectively. In the 
physical domain logarithmically spaced radial cells 
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are used, providing a fine grid scale near the 
cylinder wall and a coarse grid in the far field. A 
dimensionless time step of Δt=0.001 is used. 

Flow past a cylinder oscillating in-line with a 
uniform free stream is modelled by a stationary 
cylinder combined with an unsteady free stream 
obtained by the superposition of a uniform flow and 
an oscillatory flow in in-line direction:  
 

.)2sin(2)( 0 itfAfiUiuiUtv xmxm 

 
(1) 

 
To model the transverse motion, the time-dependent 
free stream velocity vector can be written as 
 

.)2cos(2)( 0 jtfAfiUjviUtv ymym 

 
(2) 

 
In Eqs. (1) and (2) everything is nondimensional; t 
and f are the time and oscillation frequency, Um is 
unity, u0x and v0y are the time dependent fluctuating 
velocities in in-line and transverse directions, 
respectively. Ax and Ay are the oscillation 
amplitudes for in-line and transverse motion, and i, 
j are the unit vectors in x,y directions, respectively. 
In Fig. 1 velocity vectors are shown for the 
transverse oscillatory flow. 

The nondimensional frequency of oscillation f 
was set at 0.8 St0, where St0 is the nondimensional 
vortex shedding frequency, or Strouhal number, for 
a stationary cylinder at that Reynolds number. This 
frequency ratio value ensures that lock-in condition 
(vortex shedding frequency equal to that of the 
cylinder oscillation f) is reached at moderate 
amplitude values. In this study only locked-in cases 
were considered. Only one frequency ratio is 
investigated, due to the computational time needed. 

The fluid is air, assumed to be incompressible. 
Both the absolute ambient temperature T~  and 

cylinder wall absolute temperature wT~  are assumed 
to be constant. The temperature ratio T*, which can 
also be interpreted as a nondimensional wall 
temperature, is defined as  
 

 TTT w
~/~* . (3) 

 
Four temperature ratios of 0.9, 1.0, 1.1 and 1.5 are 
investigated. For flows over a heated cylinder the 
fluid properties such as viscosity, density and 
thermal conductivity vary with temperature. The 
dependence of the viscosity on temperature is given 
by Sutherland’s formula [14] and further fluid 
properties are obtained from [15]. Since the 
maximal Richardson number Ri was 0.35 for the 
investigated cases, free convection was neglected, 
as is standard for Ri < 0.5 [16]. 

For the unheated cases (T*=1.0) the FVM 
results are compared with the data of the second 
author, who used his 2D in-house code based on the 
finite difference method (FDM). For FDM a non-
inertial system fixed to the cylinder is used to 

compute the 2D low-Reynolds number unsteady 
flow around a circular cylinder placed in a uniform 
stream and forced to oscillate in in-line or 
transverse directions. The governing equations are 
the nondimensional Navier-Stokes equations for 
incompressible constant-property Newtonian fluid, 
the equation of continuity and the Poisson equation 
for pressure. On the cylinder surface, no-slip 
boundary condition is used for the velocity and a 
Neumann type boundary condition is used for the 
pressure. Potential flow is assumed in the far field. 
The code is thoroughly tested against experimental 
and computational results in Baranyi [17]. 

The FDM code is for a mechanically-oscillated 
cylinder placed in a uniform stream, while the 
present FVM simulation is for oscillatory flow 
around a stationary cylinder. When viewed from a 
system fixed to the cylinder, these two cases are 
kinematically identical and can thus be compared. 

The shape of the computational domain for the 
FDM simulation is the same as for the FVM, but the 
domain size is different: for FDM the domain for 
in-line motion is d∞/d=360, while for transverse 
motion it is d∞/d=160. 

Flow and heat transfer features are of interest in 
this study. Time-mean (TM) and root-mean-square 
(rms) values of lift CL, drag CD coefficients were 
evaluated and plotted against the oscillation 
amplitude or Reynolds number. The lift and drag 
coefficients shown in this study do not contain 
inertial forces originating from the system fixed to 
the accelerating cylinder. Coefficients without 
inertial forces are often termed ‘fixed body’ 
coefficients [2]. The relationship between the two 
sets of coefficients can be written as 
 

xDfbDyLfbL aCCaCC 00 2
,

2


 , (4) 

 
where subscript fb refers to the fixed body 
(understood in an inertial system fixed to the 
stationary cylinder) Baranyi [18]. Here a0x and a0y 
are the dimensionless x and y components of 
cylinder acceleration. Since these accelerations are 
periodic their time-mean values vanish, resulting in 
identical TM values for the two setups. Equation (4) 
shows that for in-line motion the two lift 
coefficients are identical, and the drag coefficients 
are different from each other. For transverse 
cylinder motion it is exactly the other way round. 

The mechanical energy transfer between the 
fluid and the cylinder for transverse motions was 
defined in [11] and was extended for two-degree-of-
freedom cylinder motion by [17]. The total energy 
transfer E can be divided into two parts, 
 

21 EEE  , (5) 
 
where E1 and E2 are the energy transfer coefficients 
originating from transverse and in-line motion; 
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L     (6) 

 
where P is the motion period and x0 and y0 are the 
dimensionless cylinder displacement in x and y 
directions, respectively, and the over dot means 
differentiation by time. As can be seen in Eq. (6), 
for in-line cylinder motion E1 is zero, so E=E2; for 
transverse motion E2 is zero, so E=E1.  

The heat transfer between the cylinder and the 
surrounding fluid is determined using the 
dimensionless, or local Nusselt number, obtained 
from (see e.g., [19]) 
 

wallr
T

k
dhNu 










 , (7) 

 
where k is the thermal conductivity of the fluid, r is 
the dimensionless radius. Here T is the 
dimensionless temperature defined by 
     TTTT w

~~~~ , where T~ is the temperature of 
the fluid in an arbitrary point measured in K, and h 
is the local convective heat transfer coefficient  
 




TT
qh

w
~~

 , (8) 

 
where q  is the heat flux from the cylinder wall to 
the fluid.  

In the present work fluid properties are not 
constant for heated cylinders so the thermal 
conductivity of the fluid k also depends on the 
temperature, which influences the Nusselt number 
value. The physical properties of the working fluids 
are evaluated at the free stream temperature T~  or 

the film temperature fT~ , which can be defined as 
the arithmetic mean of the cylinder wall 
temperature and the free-stream temperature [20]. 
Some studies have indicated that the vortex 
shedding in an air flow can be reduced or even 
completely suppressed by increasing the cylinder 
temperature [21, 22]. The temperature variation 
leads to changes in the kinematic viscosity of fluid, 
so the local Reynolds number varies in the near 
field of the heated cylinder. This phenomenon leads 
to the development of the effective temperature 
concept, which models the varying kinematic 
viscosity in the non-isothermal wake behind a 
heated circular cylinder by defining an effective 
temperature  

 
   TTcTT weff

~~~~ , (9) 
 
where c is a constant. This concept was first 
introduced by Lecordier et al. [21] and later refined 
by Wang and Travnicek [16], who successfully 
correlated their experimental data for Nusselt 

number and suggested c=0.36. In the present work 
we use the Nusselt number Nueff=Nu( effT~ ) based on 

the effective temperature effT~ , where c = 0.36. 

3. RESULTS 
In the present study, computations were carried 

out for in-line and transverse oscillatory flows at a 
frequency ratio of f/St0=0.8 in the lock-in domain. 
This frequency ratio value ensures that lock-in 
condition is reached at moderate amplitude values. 
This keeps amplitudes well within the range of 
reliability of the computational procedure. In 
addition, it appears that in practice the frequency 
ratio of oscillating bodies is in the vicinity of unity 
[11, 23]. For both motions the rms and TM of force 
coefficients, Nusselt number and the mechanical 
energy transfer between the fluid and the cylinder 
are analysed.  

 
3.1 In-line Oscillation 

For in-line motion the computations are 
performed at Re=120 and at two temperature ratios 
of T*=1.0 and 1.5 with amplitude of oscillation as 
the independent variable.  

Figure 2 shows the time-mean (TM) of lift (and 
the identical fixed body lift) against the oscillation 
amplitude for two temperature ratios. For the 
unheated case (T*=1.0) the results obtained by 
FVM and FDM are in good agreement. The solution 
jumps between two states, as was found earlier by 
[5]. The state curves compare well for the two 
methods but the location and number of jumps are 
different. This is not surprising, since the system 
boundary separating the basins of the two attractors 
of this nonlinear system can be very complex, and a 
tiny change in the parameters can trigger a switch to 
the other attractor of the system [17]. As can also be 
seen in the figure, the two state curves are mirror 
images of each other, as was found earlier in [5]. 
State curves for the heated (T*=1.5) and unheated 
(T*=1.0) cases are nearly identical. It can also be 
seen that for increasing temperature ratio the lower 
boundary of the locked-in domain shifts towards 
smaller amplitude values. The lock-in domain 
begins at Ay=0.35 for the unheated case and at 
Ay=0.305 for T*=1.5. 

The rms of drag coefficient is shown in Figure 
3 for T*=1.0 and 1.5 at Re=120. The two methods 
compare well. It can be seen that the rms values 
increase with both amplitude and temperature ratio. 

The mechanical energy transfer E between the 
fluid and the body was also investigated for in-line 
flow oscillation. Figure 4 shows E=E2 against 
oscillation amplitude Ax at Re=120 for T*=1.0 and 
1.5. The values of E were found to be negative in 
the entire lock-in domain investigated. This means 
that the fluid acts against the cylinder motion, with 
a dampening effect. The absolute value of E 
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increases with amplitude but decreases with 
temperature ratio. The agreement between FDM 
and FVM results is very good. 
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Figure 2. Time-mean of lift versus in-line 
oscillation amplitude for two temperature ratios  
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Figure 3. The rms of lift versus in-line oscillation 
amplitude 
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Figure 4. Mechanical energy transfer versus in-
line oscillation amplitude 

The heat transfer between the cylinder and the 
surrounding fluid is calculated using the effective 
Nusselt number Nueff based on the effective 
temperature (see Eq. (9)). In a previous study [24] 

the uniform flow past a heated stationary cylinder 
(Ax=Ay=0) was investigated and Nueff agreed well 
with the experimental data of [16, 22] for different 
Reynolds numbers. 

Figure 5 shows Nueff versus oscillation 
amplitude at T*=1.0 and 1.5 for in-line oscillation. 
It was earlier found that for a heated stationary 
cylinder Nueff  increases with Re and decreases with 
T* [24]; here, for in-line motion, a similar tendency 
was found at given amplitude values for Nueff. As 
can be seen in Fig. 5, Nueff first increases with 
increasing oscillation amplitude, reaches a 
maximum value at around Ax=0.55, and then 
decreases slightly, indicating that higher amplitude 
values may suppress the temperature effects. This 
seemingly contradicts the claim of Karanth et al. 
that Nueff increases with increasing velocity 
amplitude [9]. However, in their study of the flow 
past and heat transfer from a cylinder oscillated in 
in-line direction at Re=200 they investigated only 
the three oscillation amplitude values of Ax=0, 0.25 
and 0.5, which fall into the rising range.  
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6.4

0.3 0.4 0.5 0.6 0.7
A x

Nu eff

FVM, T*=1.0 FVM, T*=1.5
 

Figure 5. Nueff versus in-line oscillation 
amplitude at T*=1.0 and 1.5 

3.2 Transverse Oscillation 
Here we compare results for an unheated 

(T*=1.0) cylinder, a cooled cylinder (T*=0.9), and a 
heated cylinder (T*=1.1 and 1.5). The Reynolds 
numbers of Re=100, 120, 140, 160 and 180 are 
investigated at four oscillation amplitude values.  

3.2.1. Unheated case 
Results at T*=1.0 are given in Figure 6 for the 

TM of drag obtained by FVM and FDM, while the 
rms of fixed body lift coefficient is shown in Figure 
7. No jumps were found in any curves, similarly to 
earlier results for a stationary unheated cylinder [5].  

The TM of drag (Fig. 6) decreases with 
increasing Re, but for a given Re, CD increases with 
increasing oscillation amplitude. The rms of lift 
(Fig. 7) increases with increasing oscillation 
amplitude for a given Re and it increases as well 
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with increasing Re for a given amplitude. The two 
CFD methods yield practically the same results.  

 

T *=1.0

1.2

1.3

1.4

1.5

1.6

100 120 140 160 180

Re

C D

FVM, Ay=0.2 FDM, Ay=0.2
FVM, Ay=0.3 FDM, Ay=0.3
FVM, Ay=0.4 FDM, Ay=0.4
FVM, Ay=0.5 FDM, Ay=0.5

 

Figure 6. Time-mean of drag versus Re at four 
transverse oscillation amplitudes, T*=1.0  
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Figure 7. CLfbrms versus Re at four transverse 
oscillation amplitudes, T*=1.0  

Figure 8 shows the mechanical energy transfer 
(E=E1) versus Re at different amplitudes for both 
methods. When the oscillation amplitude is held 
constant, the value of E increases with Re. The two 
methods yield good agreement.  
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Figure 8. Mechanical energy transfer versus Re 
at four transverse oscillation amplitudes, T*=1.0 

We can see that the E for Ay=0.5 is always 
negative in the lock-in domain, for Ay=0.2 E is 
always positive, and the other two curves change 
from negative to positive E with increasing Re. 
Positive E values mean that energy is added to the 
cylinder from the fluid, and so flow-induced 
vibration is liable to occur in the free vibration case. 
Negative E values, on the other hand, tend to 
dampen vibration [17]. 

3.2.2. Heated or cooled cylinder 
Although four oscillation amplitudes were 

investigated, here we present results for only one 
value, Ay=0.2. Similar trends to the results shown 
here were found for the other Ay values. 

Figure 9 shows the TM of drag against 
Reynolds number for different temperature ratios.  
As can be seen in the figure, the drag increases with 
increasing temperature ratio and decreases with 
increasing Re, similarly to the uniform flow around 
a stationary heated cylinder [24]. 

The rms of the fixed body lift coefficient CLfbrms 
is shown in Figure 10. Rms increases fairly steadily 
with increasing Re. At a given Reynolds number, 
CLfbrms decreases with increasing temperature ratio.  
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Figure 9. Time-mean of drag versus Re at four 
temperature ratios, Ay=0.2 
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Figure 10. The rms of lift versus Re at four 
temperature ratios, Ay=0.2 
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Figure 11 shows the mechanical energy transfer 
(E=E1) versus Re at different temperature ratios T* 
for Ay=0.2. It can be seen in the figure that E 
decreases with increasing T* for a given Re, and is 
primarily positive in the lock-in domain.  
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Figure 11. Mechanical energy transfer versus Re 
at four temperature ratios, Ay=0.2 

For transverse motion the heat transfer is also 
investigated. Figure 12 shows the effective Nusselt 
number versus Reynolds number for different 
amplitudes for T*=1.0. Although it was found for 
in-line motion that the curve of Nueff is not linear 
(see Fig. 5), for transverse motion Nueff increases 
linearly with oscillation amplitude, similarly to the 
results of [9]. When the oscillation amplitude is 
held constant, the value of Nueff increases linearly 
with Re. As Re is increased, the distance between 
the Nueff curves belonging to different oscillation 
amplitudes increases slightly. 

The effect of temperature ratio on the effective 
Nusselt number is shown for different amplitude 
values and different Reynolds numbers in Figure 
13. When the oscillation amplitude is held constant 
Nueff values increase linearly with Reynolds 
number. Increasing the temperature lowers Nueff. 
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Figure 12. Nueff versus Re at four transverse 
oscillation amplitudes, T*=1.0 
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Figure 13. Nueff versus Re at different T*, Ay=0.2 

4. SUMMARY  
The present work numerically investigated the 

effect of temperature ratio (wall temperature over 
ambient temperature), amplitude of oscillation, and 
Reynolds number on heat transfer, mechanical 
energy transfer and force coefficients from a heated 
circular cylinder placed in oscillating flow in in-line 
or in transverse direction. For the unheated case the 
computational results obtained by the finite volume 
method (Ansys Fluent) are compared with those of 
a finite difference method, finding good agreement.  

For in-line oscillation practically the same state 
curves are found for unheated and heated cases, but 
curves of larger temperature ratio shift the lock-in 
domain to smaller amplitude values.  

For a given amplitude value the effective 
Nusselt number Nueff decreases with increasing 
temperature ratio for in-line and transverse 
oscillation, while with increasing oscillation 
amplitude for in-line motion Nueff first increases, 
reaches a maximum value and then decreases 
slightly, indicating that higher amplitude values 
may suppress the temperature effects. For 
transverse oscillation Nueff increases linearly with 
amplitude and with Reynolds number.  

The mechanical energy transfer E for in-line 
motion results is always negative (flow acts against 
cylinder motion), while for transverse motion both 
positive (enhancing cylinder motion) and negative 
values occur. With increasing temperature the value 
of E decreases for in-line oscillation. For transverse 
motion the energy transfer increases with Reynolds 
number for a given amplitude.  

A possible further step in the research is the 
further investigation of the combined effect of 
oscillation amplitude and surface temperature for a 
heated cylinder oscillating in-line. 
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