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Abstract 

Rectangular hollow sections (RHS) can advantageously 

applied in cellular plates as an orthogonal grid of 

stiffeners. Formulae are given for the overall buckling 

strength of a uniaxially compressed rectangular simply 

supported cellular plate. This strength is much more 

larger than that of a plate stiffened on one side by open 

section ribs because of the large torsional stiffness of the 

cellular plate. The four walls of a square box column are 

constructed from cellular plates with tubular stiffeners. 

The cantilever column is loaded by compression and 

bending. In the optimization process the optimal sizes 

and number of RHS stiffeners in both directions as well 

as the deck plate thickness and the width of the box 

column section are sought, which minimize the cost 

function and fulfil the design constraints.  Constraint on 

maximum stress and limitation of the horizontal 

displacement of the column top are considered. The cost 

function contains the cost of material, assembly, welding 

and painting. 

Keywords: Welded tubular structures, Cellular plates, 

Square box column, Cost calculation, Structural 

optimization 

1. Introduction 

The aim of the present study is to show that the 

rectangular hollow section (RHS) stiffeners can be 

applied in welded cellular plates from which steel 

structures of advantageous characteristics can be 

constructed. 

 

Cellular plates consist from two base plates between 

which a grid of stiffeners is welded. In the case of RHS 

stiffeners the base plate elements are welded using 

square butt CJPG (complete joint penetration groove) 

SAW (submerged arc welding) welds. 

 

Cellular plates have the following advantages over plates 

stiffened on one side: (a) their torsional stiffness 

contribute to the overall buckling strength significantly, 

therefore, their height and thicknesses can be smaller and 

the welding cost lower, (b) their symmetry eliminates the 

large residual welding distortions, which can occur due 

to the shrinkage of eccentric welds, (c) their plane 

surfaces can be better protected against corrosion. 

 

Box columns of large load-carrying capacity are widely 

used in bridges, buildings, highway piers, pilons, towers 

etc. Since the thickness required for an unstiffened 

column can be too large, stiffened plate sides should be 

used. 

 

Modern welded structures should be safe, fit for 

production and economic. In the structural optimization 

process the safety and producibility is guaranteed by 

fulfilling the design and fabrication constraints, economy 

is achieved by minimization of a cost function.  

 

We have developed a cost calculation method and 

applied it mainly for welded structures. The cost function 

contents the cost of material, assembly, welding and 

painting and is formulated according to the fabrication 

sequence. In the material cost the cost factors for plates 

and RHS stiffeners are different. 

 

Furthermore we have adapted effective mathematical 

methods for constrained function minimization, which 

are applied in the present problem with several variables 

and highly nonlinear functions. 

 

In the present numerical problem the following data are 

given: the cantilever column height, the vertical 

compressive force, the horizontal force acting on column 

top, the steel yield strength, the factors for cost 

calculation. The following variables are optimized: width 

of the square box column section, base plate thickness, 

number and dimensions of the RHS stiffeners in both 

directions. Constraints on maximum stress and allowable 

horizontal displacement on the column top are 

considered. 

 

In previous studies [1, 2] it has been shown that cellular 

plates can be calculated as isotropic ones, bending 
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moments and deflections can be determined by using 

classic results of isotropic plates for various load and 

support types.  

In the book [3] some problems can be found about 

cellular plates. Welded cellular plates for ships 

investigated in [4, 5] consist of two face sheets and some 

longitudinal ribs of square hollow section welded 

between them using arc-spot welding technology. 

2. Characteristics of cellular plates 

The Huber’s equation for orthotropic plates in the case of 

a uniform compressive load 
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where the prime (
,
) and dot (

.
) superscripts denote partial 

derivatives with respect to x and y respectively, 
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is the torsional stiffness of an orthotropic plate. 
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Figure 1. Cellular plate with RHS stiffeners 

 

The corresponding bending and torsional stiffnesses are 

defined as 
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for cellular plates  
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The solution of Eq.(5) yields the classic overall buckling 

formula for critical force of a simply supported 

rectangular plate 
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Effective plate widths  
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Effective cross-sectional areas 
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Moments of inertia 
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3. Minimum cost design of the square box 

column 

In the optimum design the following variables should be 

optimized: the column width b0, the outer and inner base 

plate thickness t, dimensions and numbers of stiffeners  

 

The buckling constraints are formulated according to the 

Det Norske Veritas rules [6]. 
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3.1. Constraints 

Constraint on overall buckling of a cellular plate wall 

(Fig. 1) 

A cantilever column is loaded by a compression force 

and a horizontal load, thus, it is subject to compression 

and bending. From this loading a compression force is 

calculated for two opposite plate elements, while the 

remaining plate elements are subject to compression and 

bending. Since this loading is not so dangerous for the 

buckling of remaining side plate elements, it is sufficient 

to design only the two main plate elements. 

 

 
 

Figure 2. A cantilever column of square box cross section. The 

walls are constructed from cellular plates with RHS stiffeners 
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where the moment of inertia of RHS stiffeners is given 

by 
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Constraint on horizontal displacement of the column 

top 
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3.2. Numerical data (Fig. 1) 

 

a0 = 15000, Nx = 3x10
7
 [N], steel yield stress fy = 355 

MPa, elastic modulus E = 2.1x10
5
 MPa, shear modulus 

G = 0.81x10
5
,  density ρ = 7.85x10

-6
 kg/mm

3
, Poisson 

ratio  ν = 0.3.   

 

 

3.3. Cost function 

 

The general formula for the welding cost is as follows [3, 

5, 7]: 

 

i
wip

n

wiwiww LCaCVCkK 3.11      (22) 

 

where kw [$/min] is the welding cost factor, C1 is the 

factor for the assembly usually taken as C1 = 1 min/kg
0.5

, 

Θ is the factor expressing the complexity of assembly, 

the first member calculates the time of the assembly, κ is 

the number of structural parts to be assembled, ρV is the 

mass of the assembled structure, the second member 

estimates the time of welding, Cw and n are the constants 

given for the specified welding technology and weld 

type. 

 

Cpi is the factor for the welding position (downhand 1, 

vertical 2, overhead 3), Lw is the weld length, the 

multiplier 1.3 takes into account the additional welding 

times (deslagging, chipping, changing the electrode). 

 

In our problem the fabrication has two phases:  
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(1) fabrication of four cellular plates: (a) welding the grid 

of RHS stiffeners, (b) welding of the deck plate 

elements to the grid, (c) welding of the base plate 

elements to the grid, except the two outermost plate 

strips to make it possible to weld the transverse 

stiffeners to the corner diagonal plates. 

 

(2) Fabrication of the whole square box column from 

four cellular plates: (a) welding of the deck plates and 

the transverse stiffeners to the four corner diagonal 

plates, (b) welding the 8 outermost base plate strips 

to the corner plates. 

 

The cost functions are formulated according to these 

fabrication phases. For each phase the number of 

assembled elements, the volume of the assembled 

structure, the characteristics of used welds (size, type, 

welding method and weld length) should be determined 

as shown in Eq (22). 

 

1a: Welding of the grid of RHS stiffeners.  

 

Continuous (ny-1) stiffeners in x-direction of sizes by, cy, 

tsy (cross-section area ARHSy), intermittent (nx-1) ones in 

y-direction of sizes bx, cx, tsx (ARHSx)  

Number of assembled elements  κ1 = ny-1+(nx-1)ny = 

nxny-1.  

SMAW (shielded metal arc welding) fillet welds of size  

aw = 0.5tsx. 

 

Volume: 

  (23) 

 

Weld length:     (24) 

Welding cost: 

 

,    (25) 

 
61085.7,2 x kg/mm

3
, kw = 1.0$/min. 

 

1b:  Welding of deck plate elements to the grid of 

stiffeners from above. 

 

Special square butt CJPG (complete joint penetration 

groove) SAW (submerged arc welding) welds. Since 

their gap is of size  t (plate thickness), the Cw constant 

relating to an I-butt weld is multiplied by 1.5. 

12 yxnn                   (26) 

              (27) 

            (28) 

 

 

     
(29) 

 

 

1c: Welding of the base plate elements to the grid from 

outside.  

 

The difference from 1b is that the two outermost plate 

strips are not welded to make it possible to weld the 

transverse stiffeners to the corner plates. The other 

difference is that one side of the plate strips second from 

outside are welded using SAW fillet welds of size  aw1 = 

0.7t  instead of square butt welds. 

 

              (30) 

 

        (31) 

 

Length of square butt welds:  

        (32) 

 

Length of fillet welds:  
03 2aL aw

        (33) 

 

 
                     (34) 

 

 
 

Figure 3. The corner of the square box column 

 

2a: Welding of the whole square box column from four 

cellular plates using four corner diagonal plates of sizes 

a0, tc and )82( cy tb . 

 

Welding of 4x2 SAW fillet welds of size aw1 and length 

of Lw4 = 8a0 connecting the corner plates to the deck 

plates as well as welding of  8(nx-1) transverse stiffeners 

to the corner plates with SMAW fillet welds of size aw 

and length of  
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2b:  Welding of the 8nx closing base plate elements to 

each other using square butt welds of length  
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to the base plates and to the corner plates using SAW 

fillet welds of size aw1 and length  Lw5 = 16a0 
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                    (40) 

Θ1 = 3. 

 

Cost of painting of the surface Sp 

 
6104.14, xkSkK ppppp  $/mm

2
, Θp = 2,  Sp = 4a0b0  

                      (41) 

 

Material cost 

 

  (42) 

 

                     (43) 

kmplates = 1.0 $/kg, kmRHS = 1.24 $/kg. 

 

Total cost 

 

   (44) 

 

 

4. Optimization techniques 
 

In the structural optimization process for an engineer it is 

important to know the behaviour of the structure well, 

the stresses, deformations, stability, eigenfrequency, 

damping, etc. It is as important to have a reliable 

optimization technique to find the optimum. 

 

In our practice on structural optimization we have used 

several techniques in the last decades. We have 

published them in our books and gave several examples 

as engineering applications [3, 5, 7]. Most of the 

techniques were modified to be a good engineering tool 

in this work. 

 

The general formulation of a single-criterion non-linear 

programming problem is the following  

 

minimize   Nxxxxf ,...,,      )( 21 ,        (45) 

 

subject to  P,...,,j    ,)x(g j 210 ,      (46) 

 

      MP,...,Pi    )x(hi 10 ,    (47) 

 

f(x) is a multivariable non-linear function, gj(x) and hi(x) 

are non-linear inequality and equality constraints, 

respectively. 

In the last two decades some new techniques appeared 

e.g. the evolutionary techniques, like Genetic Algorithm, 

GA by Goldberg [8], the Differential Evolution, DE 

method of Storn & Price [9], the Ant Colony Technique 

[10], the Particle Swarm Optimization, PSO by Kennedy 

& Eberhart [11], Millonas [12] and the Artificial Immune 

System, AIS [13, 14, 15]. Some other high performance 

techniques such as Leap-frog with the analogue of 

potential energy minimum from Snyman [16, 17], 

Snyman-Fatti method and the Harmony Search technique 

have also been developed. 

 

4.1. The Particle Swarm Optimization algorithm 

Several methods have been developed to escape from 

being caught in local optima. The Particle Swarm 

Method of global optimization is one of such methods. A 

swarm of birds searches for food, protection, etc. in a 

very typical manner. If one of the members of the swarm 

sees a desirable path to go, the rest of the swarm will 

follow quickly. Every member of the swarm searches for 

the best in its locality - learns from its own experience.  

 

Additionally, each member learns from the others, 

typically from the best performer among them. Even 

human beings show a tendency to learn from their own 

experience, their immediate neighbours and the ideal 

performers. The Particle Swarm method of optimization 

mimics this behaviour. Every individual of the swarm is 

considered as a particle in a multidimensional space that 

has a position and a velocity. These particles fly through 

hyperspace and remember the best position that they 

have seen. Members of a swarm communicate good 

positions to each other and adjust their own position and 

velocity based on these good positions. The Particle 

Swarm method of optimization testifies the success of 

bounded rationality and decentralized decisionmaking in 
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reaching at the global optima. It has been used 

successfully to optimize extremely difficult multimodal 

functions. 

 

Each particle keeps track of its coordinates in the 

problem space which are associated with the best 

solution (fitness) it has achieved so far. (The fitness 

value is also stored.) This value is called pbest. Another 

"best" value that is tracked by the particle swarm 

optimizer is the best value, obtained so far by any 

particle in the neighbours of the particle. This location is 

called lbest. when a particle takes all the population as its 

topological neighbours, the best value is a global best 

and is called gbest. 

 

The particle swarm optimization concept consists of, at 

each time step, changing the velocity of (accelerating) 

each particle toward its pbest and lbest locations (local 

version of PSO). Acceleration is weighted by a random 

term, with separate random numbers being generated for 

acceleration toward pbest and lbest locations.  

 

Another reason that PSO is attractive is that there are few 

parameters to adjust. One version, with slight variations, 

works well in a wide variety of applications.  

The method is derivative free, and by its very nature the 

method is able to locate the global optimum of an 

objective function. Constrained problems can simply be 

accommodated using penalty methods. 

 

Lately, the PSO was successfully applied to the optimum 

shape and size design of structures by Fourie and 

Groenwold [18]. An operator, namely craziness, was re-

introduced, together with the use of dynamic varying 

maximum velocities and inertia.  

 

PSO was applied at several structural optimization 

problems cost minimization of an orthogonally stiffened 

welded steel plate, ring-stiffened conical shell, 

optimization of a wind turbine tower structure, 

optimization of a stiffened shell Farkas & Jármai [3, 5, 

7]. 

 

4.2. The IOSO program 

IOSO is an advanced semi-stochastic algorithm for 

constrained multi-objective optimization (Egorov 1998) 

incorporating certain aspects of a selective search on a 

continuously updated multi-dimensional response 

surface. Both weighted linear combination of several 

objectives and true multi-objective formulation options 

creating Pareto fronts are incorporated in the algorithm. 

The main benefits of this algorithm are its outstanding 

reliability in avoiding local minima and its computational 

speed. Samples are compared to more traditional semi-

stochastic optimizers like genetic algorithms. 

Furthermore, the self-adapting response surface 

formulation used in this research allows for incorporation 

of realistic non-smooth variations of experimentally 

obtained data and allows for accurate interpolation of 

such data. This optimization algorithm also allows for a 

finite number of equality and inequality constraints.  

 

 

4.2.1 Multi-objective optimization concepts  

There is a growing need for the multi-disciplinary and 

multi-objective approach to design with a large number 

of design variables, resulted in an increased interest in 

the use of various versions of hybrid [19], semi-

stochastic [20] and especially stochastic [21] constrained 

optimization algorithms. It should be pointed out that 

including more objectives in the optimization process 

often has similar effects on the overall optimization 

effort required as including more constraints especially if 

these constraints are incorporated as penalty functions. 

The multi-objective optimization problem maximizes a 

vector of n objective functions  

 

max F
i
(x) for i = 1, ... n             (48) 

subject to a vector of inequality constraints  

g
j
(x)≤ 0 for j = 1, ... m             (49) 

and a vector of equality constraints  

h
q
(x) = 0 for q = 1, ... k             (50) 

 

In general, the solution of this problem is not unique. 

With the introduction of the Pareto dominance concept 

the possible solutions are divided into two subgroups: the 

dominated and the non-dominated. The solutions 

belonging to the second group are the "efficient" 

solutions, that is, the ones for which it is not possible to 

improve any individual objective without deteriorating 

the values of at least some of the remaining objectives.  

 

IOSO approach is based on the widespread application 

of response surface methodology, based upon the 

original approximation concept, within the frameworks 

of which it adaptively uses global and middle-range 

multi-point approximations. One of the advantages of 

this approach is the possibility of ensuring good 

approximating capabilities using a minimum amount of 

available information. This possibility is based on self-

organization and evolutionary modelling concepts [22]. 

During the approximation, the approximation function 

structure is being evolutionarily changed, so that allows 

us to approximate successfully the optimized functions 

and constraints having sufficiently complicated topology. 

The obtained approximation functions can be used by 

multi-level procedures [19] with the adaptive change of 

simulation level within both a single and multiple 

disciplines of object analysis, and also for the solution of 

their interaction problems.  

Multi-objective optimization problem solution [19] is 

based on the use of approximation functions for 
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individual objectives and constraints. The current search 

area of adaptive changing makes it possible to search 

numerically the Pareto-optimal set without the use of any 

versions of composite objective functions (convolution 

approach). To reduce the computing time significantly, 

we have developed a multi-level multi-objective 

constrained optimization methodology that is a modified 

version of a method of Indirect Optimization based upon 

Self-Organization (IOSO) [22] and evolutionary 

simulation principles. Each iteration of IOSO algorithm 

consists of two steps. The first step is the creation of an 

analytical approximation of the objective function(s). 

Each iteration in this step represents a decomposition of 

the initial approximation function into a set of simple 

analytical approximation functions so that the final 

response function is a multi-level graph. The second step 

is the optimization of this approximation function. This 

approach allows for corrective updates of the structure 

and the parameters of the response surface 

approximation. The distinctive feature of this approach is 

an extremely low number of trial points to initialize the 

algorithm (typically 30 to 50 values of the objective 

function for the optimization problems with nearly 100 

design variables). During the IOSO operation, the 

information concerning the behaviour of the objective 

function in the vicinity of the extremum is stored, and the 

response function is made more accurate only for this 

search area.  

 

While proceeding from one iteration to the next, the 

following steps are carried out: modification of the 

experiment plan; adaptive selection of current extremum 

search area; choice of the response function type (global 

or middle-range); transformation of the response 

function; modification of both parameters and structure 

of the optimization algorithms; and, if necessary, 

selection of new promising points within the researched 

area. Thus, during each iteration, a series of 

approximation functions for a particular objective of 

optimization is constructed. These functions differ from 

each other according to both structure and definition 

range. The subsequent optimization of these 

approximation functions allows us to determine a set of 

vectors of optimized variables.  

It should be pointed out that the IOSO approach is 

different than the artificial neural network approach that 

performs fast interpolation of the existing experimental 

data sets. Our approach combines a multi-level graph 

theory, a special version of radial basis function 

formulations, and neural networks into a self-adaptive 

response surface optimization algorithm capable of 

exploring and optimizing data that is outside of the 

original data set. 

 

3.5. Results 

Box columns of large load-carrying capacity are widely 

used in bridges, buildings, highway piers, pilons, towers 

etc. Since the thickness required for an unstiffened 

column can be too large, stiffened plate walls should be 

used. 

The unknows were the dimensions of the column, 

width, thicknesses, number of stiffeners. The total 

number of unknowns is 9 (b0 column width, th plate 

thickness, bx, by are stiffener heights in x - and y 

directions, cx, cy stiffener widths in x - and y directions, tb 

stiffener thickness, nx and ny x - and y directions) (Fig.1) 

and the number constraints is 11. The constraints include 

the upper and lower size limits of the unknowns (for 

example minimum and maximum thickness). 

 
Table 1. Results of the stiffened box column 

 
b0 th bx cx cy tbx tby nx ny Cost 

3250 9 90 50 40 7 7 12 2 55399 

2843 12 67 29 37 11 8 8 2 56515 

 

Result show, that both techniques have found an 

optimum. The first row belongs to Particle swarm 

optimization, the second row belongs to IOSO. 

4. Conclusion 

Design, fabrication and economy are the three parts of an 

optimum design. If we consider the analytical aspects of 

the design, the effect of different welding and other 

technologies on the cost of the structure, than we can 

reach a minimum cost solution using efficient 

optimization techniques. Particle swarm and IOSO are 

two of them. A stiffened column with cellular structure is 

shown. The two techniques give nearly the same result. 

The difference comes from finding the discrete values. 

When we compared unstiffened thick-walled column, 

stiffened cellular column with flat stiffeners and half I-

beams and the hollow type stiffeners at the cellular 

column, we found that the best construction is the hollow 

section type stiffener. Further considerations will relate 

to earthquake and/or fire resistant design of this kind of 

structure. 
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