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Abstract   In this study a new inversion method is presented for performing one 

dimensional Fourier-transform, which shows highly robust behavior against nois-

es. As the Fourier-transformation is linear the data noise is also transformed to the 

frequency domain making the operation noise sensitive especially in case of non-

Gaussian noise distribution. In the field of inverse problem theory it is well-known 

that there are numerous procedures for noise rejection, so if the Fourier transfor-

mation is formulated as an inverse problem these tools can be used to reduce the 

noise sensitivity. It was demonstrated in many case studies, that the method of 

Most Frequent Value provides useful weights to increase the noise rejection capa-

bility of geophysical inversion methods. Following the basis of the latter method 

the Fourier-transform is formulated as an Iteratively Reweighted Least Squares 

problem using Steiner’s weights. Series expansion was applied to the discretiza-

tion of the continuous functions of the complex spectrum. It is shown that the Ja-

cobian matrix of the inverse problem can be calculated as the inverse Fourier 

transform of the basis functions used in the series expansion. In order to avoid the 

calculation of the complex integral a set of basis functions being eigenfunctions of 

the inverse Fourier transform are produced. This procedure leads to the modified 

Hermite functions and results in quick and robust inversion-based Fourier-

transformation method. The numerical tests of the procedure show that the noise 

sensitivity can be reduced around an order of magnitude compared to the tradi-

tional Discrete Fourier Transform. 
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1 Introduction 

  In geophysical interpretation it is always an important task to reduce the influ-

ence of data noises. It is especially true for the continuous Fourier transform as 

well as its variants the Discrete Fourier Transform (DFT) and the Fast Fourier 

Transform (FFT) algorithms as they are very sensitive to data noises. To address 

this problem the Fourier transformation was handled as an over-determined in-

verse problem (Dobróka et al. 2012), because in the field of geophysical inversion 

various methods had been developed for noise reduction.  

  It is well-known from inverse problem theory that simple least square (LSQ) 

methods give optimal results only when data noises follow Gaussian distribution. 

The practice of geophysical inversion shows that the least square solutions are 

very sensitive to sparsely distributed large errors (i.e. outliers in the data set) and 

the estimated model parameters may even be completely non-physical. More gen-

erally, the distribution of the errors in measured data is rarely Gaussian so the use 

of the LSQ method cannot be optimal which implies the need for a robust inver-

sion method. There are various ways to address the question of the statistical ro-

bustness. One of the most frequently used methods in robust optimization is the 

Least Absolute Deviation (LAD) method. In this case L1 norm is used to charac-

terize the misfit between the observed and the predicted data. LAD inversion can 
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be numerically realized by using linear programming or (after Scales et al. 1988) 

applying Iteratively Reweighted Least Squares method (IRLS). Another possibil-

ity is the use of the Cauchy criterion (Amundsen 1991). The most popular imple-

mentation is the IRLS algorithm involving Cauchy weights. This is a very useful 

procedure, but it has got a problem that the scale parameter of the Cauchy weights 

has to be a priori given. This difficulty was elegantly eliminated by Steiner (1988) 

who derived the scale parameters from the real statistics of the data sets in the 

framework of the Most Frequent Value method (MFV). It was proved by Dobróka 

et al. (1991) that the Steiner’s weights calculated on the basis of the MFV method 

results in a very efficient robust inversion method by inserting them into an IRLS 

procedure. The method was successfully applied in groundwater modeling (by 

Szucs et al. 2006) and also in constructing and testing a weighted tomography algo-

rithm (W-SIRT) by     Dobróka and Szegedi (2014). 

  To reduce noise sensitivity the Fourier transformation was considered as an over-

determined robust inverse problem using the IRLS method. An essential step of 

this approach is the use of series expansion in the discretization of the real and im-

aginary part of the spectrum. Hermite functions were used as basis functions, 

which gave us the advantage that the elements of the Jacobian matrix can be cal-

culated by means a simple explicit formula. The expansion coefficients were de-

termined in the IRLS algorithm with the use of Steiner’s weights. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4  

2 The Fourier transformation and its noise sensitivity 

  The Fourier transformation plays a very important role in geophysical data pro-

cessing. By using it the frequency spectrum of the time domain signal can be 

computed as 

 
1

( ) ( )
2

j tU u t e dt








  , (1) 

where u(t) denotes the time dependent function and U(ω) is the complex valued 

continuous function of frequency (j is the imaginary unit). By means of the inverse 

Fourier transform one can return from the frequency domain to the time domain 

using the formula 

 
1

( ) ( )
2

j tu t U e d 






  . (2) 

  In the practice of data processing the Discrete Fourier Transform (DFT) and its 

numerically cost-effective version the Fast Fourier Transform (FFT) is extensively 

used. In case of a discrete data set the continuous u(t) function is sampled in (-

T,T) with ∆t sampling interval and its DFT is calculated by 

 

2 2

2

1
( ) ( ) , ,

N nk
j

N

k N

U n f t u k t e f
N t

   

   

     


  
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where the symbol 2N    denotes the integer part and n is an integer in the 

2 , 2N N           interval. 

2.1 Numerical investigation  

  In order to demonstrate the noise sensitivity of DFT a numerical experiment is 

presented. A synthetic data set is calculated equidistantly in the [-1, 1] time inter-

val using the time dependent function 

 ( ) sin( )tu t t e t     , (3) 

where t is the time (in seconds), κ ≈ 738.91 and η = 2 are constant, λ = 20 [1/sec], 

ω = 40π [1/sec], φ = π/4 and the sampling interval is ∆t = 0.005 second. Figure 1 

shows this noise-free data set and Fig. 2 represents the real and imaginary part of 

the spectrum calculated by means of DFT. Two noisy data sets were generated. In 

case of data set I. the noise-free data shown in Fig. 1 were contaminated by Gauss-

ian noise with zero mean and standard deviation σ= 0.01. The noisy signal and its 

DFT are shown in Fig. 3 and Fig. 4, respectively. Data set II. contains noise fol-

lowing Cauchy distribution (with scale parameter ε=0.04, local parameter is zero). 

The noisy signal and its DFT are shown in Fig. 5 and Fig. 6, respectively.  

  The distance between the noisy and noise-free data sets is characterized in the 

time domain by 
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  
2

( ) ( )

1

1
( ) ( )

tN
noisy noise free

k k

kt

d u t u t
N





   (4) 

and similarly the distance between the (DFT) spectra calculated by means of 

noise-free and noisy data is characterized by 

 

    
2 2

( ) ( ) ( ) ( )

1

1
Re ( ) ( ) Im ( ) ( ) ,

fN

noisy noise free noisy noise free

i i i i

if

D U f U f U f U f
N

 



         

 (5) 

where tN  and fN  are the number of the samples in time and frequency domain, 

respectively. (Throughout the paper the D quantity is used as a measure character-

izing the noise sensitivity of the method used to calculate the spectrum.) In the 

present numerical example the 401t fN N   and the characteristic distances 

are shown in Table 1. 

Table 1 Characteristic distances between the noise-free and noisy data in time and frequency 

domains, respectively. 

 

data set I. 

 (Gaussian noise) 

data set II. 

(Cauchy noise) 

Distance in time domain (d) 0.1032 0.4554 

Distance in frequency domain (D) 0.0103 0.0457 
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3 Methodology 

  In order to reduce the influence of noise on FT the Fourier transform is treated as 

an over-determined inverse problem. As a first step the continuous function U(ω) 

should be discretized and written in the form of series expansion 

 
1

( ) ( )
M

n n

n

U B 


  , (6) 

where Bn represents the complex expansion coefficients, Ψn(ω) is the n-th known 

basis function and M is the number of unknown series expansion coefficients. Us-

ing the terminology of discrete inverse problem theory, the theoretical (calculated) 

values of time domain data (forward modeling) can be given by the inverse Fouri-

er transform  

 

( )

1 1

1 1
( ) ( ) ( )

2 2

k k

M M
j t j tcalc

k n n n n

n n

u t B e d B e d
    

 

 

  

 
    

 
  

, (7) 

where tk is the k-th time sample. Let us introduce the Jacobian matrix 

 ,

1
( ) ( )

2

kj t

k n n nG e d
  







    F -1
, (8) 

which is the inverse Fourier transform of the basis function Ψn(ω). Thus, a very 

simple direct problem is obtained in which theoretical (calculated) data can be 

written as a linear expression for the Bn expansion coefficients 
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( )

,

1

( )
M

calc

k n k n

n

u t B G


 , (9) 

where the unknown model parameters Bn will be estimated by solving an inverse 

problem. 

3.1 A useful choice of basis functions 

  From Eq. (6) it is obvious that the calculation of the complex integral can be 

avoided if the basis functions Ψn(ω) are chosen from the eigenfunctions of the in-

verse FT, that means  

 , ( ) ( ),k n n n kG t    F -1
 

where λ is the eigenvalue. It can be proved (Vaidyanathan 2008) that if Ψ0(ω) is 

eigenfunction of F-1 with the eigenvalue λ, then  

 
0

1 0

( )
( ) ( )

d

d


  




     (10) 

is also eigenfunction with eigenvalue jλ, so that 

  1 1( ) ( )j t   F -1
. (11) 

This expression gives a way to define a set of eigenfunctions. Let us choose  

 
2 2
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which is an eigenfunction of F-1 with λ =1 

 
2 2 22 2 21

2

j t te e e d e   




  



 F -1
. 

According to Eq. (7) 

 
2 20

1 0

( )
( ) ( ) (2 )

d
e

d


   




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2 1
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e
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3 2
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( ) ( ) (8 12 )

d
e

d


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


       

etc. are also eigenfunctions of F-1 with eigenvalue jn in case of Ψn(ω). It can be 

seen that the sequence of polynomials (in parenthesis) follows the formula 

 
(0) (0) (0)

1 1( ) 2 ( ) 2 ( )n n nh h nh      , 

which is the recursion equation of the Hermite polynomials with 

(0) (0)

0 11, 2h h   . Based on Eq. (12) the desirable set of basis functions in Eq. 

(6) resulting the form 
2 2 (0) ( )ne h 

. Using the integral property of the Hermite 

polynomials 
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2 (0) (0)( ) ( ) 2 !n

n m nme h h d n    






 , 
0,

1,
nm

n m

n m



 


, 

one can write the basis functions in the orthonormal and square-integrable form of 

Hermite-functions 

 

2 2 (0)
(0) ( )

( )
!2

n
n

n

e h
H

n

 






 ,  

where 
(0) ( )nh  is the n-th Hermite polynomial. It can be seen that the above pro-

cedure leads to the well-known result (Duoandikoetxea, 1995) that the Hermite 

functions are eigenfunctions of the inverse FT 

  (0) (0)( ) ( ) ( )n

n nH j H t F -1
. (13) 

With any other choice of Ψ0(ω) (having inverse FT) new sets of eigenfunctions 

can be defined. 

  Solving real problems in Fourier transformation the Hermite functions have to be 

properly scaled, because in geophysical applications the frequency covers a wide 

range. The scaled Hermite polynomials are introduced by the Rodriguez formula 

 
2 2

( , ) ( 1)

n

n

n

d
h e e

d

  


 
   
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 (14) 

fulfilling the recursion equation  
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 1 1( , ) 2 ( , ) 2 ( , )n n nh h n h            

and  

 
2

( , ) ( , ) (2 ) ! ,n

n m nme h h d n 
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








0,

1,
nm

n m

n m



 
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, 

where α is the scaling factor and h0(ω,α)=1, h1(ω,α)=2αω (Gröbner and Hoffreiter 

1958). So the scaled Hermite functions can be defined as 

 

2 2 ( , )
( , )

!(2 )

n
n

n

e h
H

n

  
 

  



 , (15) 

having the orthogonality equation 

 ( , ) ( , )n m nmH H d     



 . 

  The Jacobian matrix based on Eq. (6) can be rewritten by the scaled Hermite 

functions Hn(ω,α) as 

 ,

1
( , )

2

kj t

k n nG H e d
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





  . (16) 

Considering the notation ' 't t   with '  , 't t  one can ob-

tain 
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 ' '(0) (0)

, 4 4

1 1 1
( ') ' ( ' )

2

kj t

k n n n kG H e d H t
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  





  F -1
,  (17) 

or due to Eq. (13) the complex valued elements of Jacobian matrix can be written 

directly as 

 
(0)

, 4

n

k
k n n

tj
G H

 

 
  

 
. (18) 

Thus, the Jacobian matrix can be calculated without integration, which makes the 

inversion-based Fourier-transform method much quicker. By using Hermite func-

tions as base functions the frequency spectrum is discretized as 

 
(0)4

1 1

( ) ( , ) ( )
M M

n n n n

n n

U B H B H     
 

   . (19) 

3.2 The Fourier transform as a Least Squares inverse problem 

  The discretized form of the spectrum can be written according to Eq. (4) by using 

the scaled Hermite function system, where the expansion coefficients Bn are calcu-

lated in the frame of the over-determined inverse problem. This inverse problem 

can be highly over-determined if the number of measurement data is much more 

than that of parameters (N>M). In case of Least Squares method (LSQ) the L2 

norm of the deviation vector is minimized 
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2 ( ) ( ) 2 ( ) 2

2 ,

1 1 1 0

( ) ( ) min.
N N N M

measured calc measured

k k k k n k n

k k k n

E e u u u B G
   

        
 

The well-known normal equation can be derived from the above condition in the 

following form 

 
( )measured

T T
G GB G u . (20) 

(Here G  is the NXM dimensional Jacobian matrix, 
T

G is its transpose matrix, B  

denotes the M-dimensional vector of the unknown expansion coefficients and 

( )measured
u is the N-dimensional vector of the time domain data.) After this one can 

estimate the complex series expansion coefficients 

 
1 ( )( ) measured

T T
B G G G u  (21) 

and by means of it, the real and imaginary part of the Fourier spectrum can be cal-

culated at any frequency by using Eq. (4). Note, in the knowledge of B  the calcu-

lated data can be given by Eq. (9) and the estimated spectrum can be computed by 

means of Eq. (19). 

3.2.1 Numerical results with LSQ-FT 

  In order to test the noise sensitivity of the LSQ inversion based Fourier transform 

algorithm (LSQ-FT) data sets I. and II. were used as introduced above. The accu-
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racy of the inversion in time- and frequency domains was computed by means of 

the distances 

  
2

( ) ( )

1

1
( ) ( )

tN
estimated noise free

k k

kt

d u t u t
N





   (22) 

and  

 

    
2 2

( ) ( ) ( ) ( )

1

1
Re ( ) ( ) Im ( ) ( )

fN

estimated noise free estimated noise free

i i i i

if

D U f U f U f U f
N

 



         

, (23) 

respectively. Here 
( )estimatedu and 

( )estimatedU are the time function and frequency 

spectrum given by means of Eq. (9) and Eq. (19), respectively with the use of the 

estimated expansion coefficients in Eq. (21). 
( )noise freeU 

 is calculated by using 

DFT. 

  Using 120M   and 0.004   in case of data set I. the real and imaginary 

parts of the spectra are shown in Fig. 7. Comparing it to Fig. 4 it can be seen that 

the LSQ-FT result is less noisy. This is confirmed also by the characteristic dis-

tance . 0.00614LSQ

ID  . Applying the LSQ-FT algorithm to calculate the com-

plex spectrum of data set II., the result is shown in Fig. 8, which seems also very 

noisy. The characteristic distance calculated by means of Eq. (5) is

. 0.0229LSQ

IID  . This result confirms the well-known fact that the LSQ method 

gives optimal parameter estimation in case of Gaussian distributed data. In case of 

both data sets, the LSQ-FT gives better result compared to DFT. 
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  The condition number of the matrix of the normal equation (Eq. (20)) is relative-

ly low ( ( ) 2.0129cond 
T

G G ) indicating a very stable LSQ inversion proce-

dure. The M number of expansion coefficients can be selected in a broad range. In 

this numerical example using noise-free input data the distances given by Eq. (22) 

and Eq. (23) (estimation errors) with M=50 are 0.016LSQ

noise freed    and 

-49.68 *10LSQ

noise freeD   , respectively which seems acceptable. Using M=150 

these distances are 
-44.20*10LSQ

noise freed    and 
-43.54 *10LSQ

noise freeD   . Below 

M=50 the estimation of the time function becomes poor, while above M=150 the 

numerical accuracy of the calculation of the Hermite functions is rapidly decreas-

ing. The choice of the  parameter is connected also to the numerical accuracy of 

the calculations as its value determines the range in which the Hermite functions 

are to be calculated. In the present stage of our research   is chosen in an empiri-

cal way. Our experiences shows, that in the interval (50 150)M   the inver-

sion results are acceptable with 
4 3(4*10 4*10 )   . To determine the op-

timal value of  requires further research. 

3.3 The Fourier transform as a robust IRLS inverse problem 

  In order to make the Fourier transform more robust an Iteratively Reweighted 

Least Squares (IRLS) method using Cauchy weights can also be implemented 

(Dobróka et al. 2012). In this case the unknown expansion coefficients Bn are es-

timated by minimizing the weighted norm 
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2

1

N

w k k

k

E w e


 , (24) 

where the diagonal weighting matrix contains Cauchy weights 

 

2

2 2k

k

S
w

S e



 

(with the scale parameter S) and the k-th element of the deviation vector is  

 
measured calc

k k ke u u  . 

  As it was mentioned before, there is a problem with inversion procedures involv-

ing Cauchy weights: the scale parameter S should be a priori given. This difficulty 

can be solved in the framework of the MFV method (Steiner 1988). In this method 

the scale parameter ε2 (Steiner’s scale factor called dihesion) is determined in an 

internal iteration loop. In the (j+1)-th step of this procedure the 
2

1j   can be cal-

culated in the knowledge of 
2

j  as 

 
 

2

2
2 2

1
2

1 2

2 2
1

3

1

N
k

k
j k

j
N

k j k

e

e

e















 
   





,  

where in the 0-th step the starting value 0  is given as 
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  0 max min

3

2
e e     

(Steiner 1988, 1997). It can be seen that the above procedure derives the scale pa-

rameter from the data set (deviation between measured and calculated data). The 

stop criterion can be easily defined by experience (for example, a fixed number of 

iterations). Using the dihesion given in the last step of the internal iterations Stei-

ner’s weights are calculated by using the formula 

 

2

2 2k

k

w
e







. (25) 

  In case of Steiner’s weights the misfit function given in Eq. (24) is non-quadratic 

(because ke  contains the unknown expansion coefficients), thus the inverse prob-

lem is nonlinear which can be solved again by applying the method of the Itera-

tively Reweighted Least Squares (Scales et al. 1988). In the framework of this al-

gorithm a 0-th order solution 
(0)B  is derived by using the (non-weighted) LSQ 

method and the weights are calculated as 

 
  

2
(0)

2
02

k

k

w

e








 (26) 

with 

 
(0) (0)measured

k k ke u u  , (27) 
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where  

 
(0) (0)

,

1

M

k n k n

n

u B G


 . (28) 

In the first iteration the misfit function 

 
  

2
1(1) (0)

1

N

w k k

k

E w e


  (29) 

is minimized resulting in the linear set of normal equations 

 
(0) (0)(1)T T measuredB uG W G G W  (30) 

of the weighted Least Squares method where the weighting matrix 
(0)

W and its 

diagonal form 

 
(0) (0)

kk kW w . (31) 

This procedure is repeated giving the typical j-th iteration step  

 
( 1) ( 1)( )T j T jj measuredB u
 

G W G G W  (32) 

with the 
( 1)j

W  weighting matrix 

 
( 1) ( 1)j j

kk kW w  . (33) 
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(In these steps the normal equation is linear, because the weights are always calcu-

lated in the previous step. Note that each step of these iterations contains an inter-

nal loop for the determination of the Steiner’s scale parameter.) This iteration is 

repeated until a proper stop criterion is met. Finally, in the knowledge of the ex-

pansion coefficients the Fourier spectrum can be calculated at any frequency by 

using Eq. (19) and also the theoretical data set (the inverse Fourier transform) can 

be calculated by means of Eq. (9). 

3.3.1 Numerical results with IRLS-FT using Steiner’s weights 

  In order to test the noise sensitivity of the robust inversion based Fourier trans-

form algorithm (IRLS-FT) at first data set II. was used. The result given in twenty 

IRLS iterations (with  120M   and 0.004  ) is presented in Fig. 9 (the 

Steiner-weights were computed in an internal loop of ten iterations). Comparing it 

to Fig. 6 it can be seen that the IRLS-FT algorithm using Steiner’s weights gives 

an improved result, which is confirmed also by the characteristic distance 

. 0.00513IRLS

IID  . Note, that this value is (around an order of magnitude) small-

er compared to DFT ( . 0.0457DFT

IID  ). Similar observations can be made in the 

time domain by calculating the inverse Fourier transformation using the IRLS-FT 

spectrum (
( )calcu given by Eq. (9)). The result is shown in Fig. 10, which - com-

pared to the input data set II. - demonstrates sufficient noise rejection. This is 

proved also by the time domain distance between 
( )calcu  and the noise-free data 
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set 
. 0.0381IRLS

IId  . (This value should be compared to the distance between da-

ta set II. and the noise-free data set shown in Table 1).  

The above results demonstrates, that (compared to LSQ-FT) the IRLS-FT algo-

rithm gives better estimation in case of data set containing outliers. It is also im-

portant to make the comparison in case of Gaussian data set. For this reason  

IRLS-FT was applied for the calculation of Fourier spectrum of data set I. The ro-

bust IRLS-FT gave slightly worse, but highly acceptable result in case of Gaussian 

data set with the spectrum distance . 0.00649IRLS

ID  . 

4 Application 

  It was shown in the previous sections that the inversion-based Fourier transfor-

mation can serve as a tool for improving the signal to noise ratio and IRLS-FT us-

ing Steiner-weights gives robust Fourier transformation. These features can make 

the proposed methods promising in various fields of data processing and engineer-

ing science. 

  Some geophysical surveys traditionally require a regular grid along which the 

measurement data should be collected. Often the temporal and financial effort giv-

en for the necessary geodetic measurement exceeds that of the geophysical meas-

urement. On the other hand the modern geophysical instruments have GPS posi-

tioning system, giving the possibility to be no longer restricted to measure on 

equidistant points. To take the advantage of the random walk measurement proce-

dure Sauerländer et al. (1999) published an efficient geomagnetic survey system 
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with avoiding separate geodetic measurement by using GPS in combination with a 

magnetic instrument and developed new algorithms for triangulation and anomaly 

detection by using the original, non-gridded data points. The use of non-

equidistant measurement arrays obviously needs processing methods independent 

of the regular or non-regular nature of the sampling. 

  In the above sections our inversion-based Fourier transform methods were tested 

on equidistant sampling points. On the other hand it is obvious that the methods 

do not require equidistant measurement system. To demonstrate it, a random time 

vector was defined as 

 
( ) ( ) ( 0.5)random regular

k kt t rand t    , 

where rand  is a random number of uniform distribution in the (0,1) interval and 

∆t is the sampling interval. Using this time vector a new data set was calculated by 

means of Eq. (3). Two noisy data sets were again generated. In case of data set Ir. 

the noise-free data were contaminated by Gaussian noise with zero mean and 

standard deviation σ= 0.01. Data set IIr. contains Cauchy noise with scale parame-

ter ε=0.04. 

  Repeating the numerical test with the new data sets very close results were found 

to our previous investigations. This is proved by calculating the distances  

 

    
2 2

( ) ( ) ( ) ( )

1

1
Re ( ) ( ) Im ( ) ( )

fN

random regular random regular

i i i i

if

D U f U f U f U f
N 

         

 , (34) 
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where 
( ) ( )( ), ( )random regularU f U f  denote the spectrum functions given by our 

inversion-based FT algorithms using time domain data 
( ) ( )( ), ( )random regularu t u t  

calculated at random or equidistant sampling points (in frequency domain the 

same data points were used). In case of LSQ-FT the distance given by Eq. (34) 

was 
( ) 44.50*10r

LSQ

I
D  , while the IRLS-FT resulted 

( ) 31.76*10r

LSQ

I
D  . 

(The distances are so small that the differences in figures can not be visually ob-

served.) 

  Real field measurements (geomagnetic, gravity, etc.) are usually made on the 

surface so the data set requires two dimensional data processing and two dimen-

sional  Fourier transformation. For this reason the development of our inversion-

based FT to the two dimensional applications is in process. 

5 Summary and conclusions 

  The aim of the above considerations was to reduce the noise sensitivity of the 

traditional Fourier transform. Therefore the FT was formulated as an over-

determined inverse problem. In order to discretize the continuous function of the 

complex spectrum, series expansion was used. It was shown, that the Jacobi’s ma-

trix of the inverse problem can be written as the inverse FT of the basis functions 

used in the discretization. This gave the idea of choosing the basis functions from 

the eigenfunctions of the inverse FT, as the computation time can be reduced ap-

preciably in this way. Following the procedure of generating eigenfunctions of the 

FT (Vaidyanathan 2008) is found the scaled Hermite functions are treated as set of 
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basis functions. The unknown parameters (series expansion coefficients) are de-

termined by solving an over-determined inverse problem. Two kinds of inversion 

procedures were introduced for estimation of the unknowns the LSQ-FT and a ro-

bust IRLS-FT. These inversion-based Fourier Transformation methods were tested 

on synthetic noisy data sets. In order to characterize the accuracy of the methods 

the characteristic distance between spectra calculated by means of noisy data as 

well as noise-free ones was applied. The results are summarized in Table 2. 

Table 2 Characteristic distances between spectra calculated by means of noisy and noise-free da-

ta using DFT, LSQ-FT and IRLS-FT. 

 DFT LSQ-FT IRLS-FT 

Data set I.  

(Gaussian noise) 

0.0103 0.00613 0.00649 

Data set II.  

(Cauchy noise) 

0.0457 0.0229 0.00513 

 

  The results show that compared to the traditional DFT the noise sensitivity can 

sufficiently be reduced by using inversion methods. As it is expected, the LSQ in-

version gives the best results in the case when the data are contaminated by Gauss-

ian noise and results in moderate accuracy in case of data sets containing outliers 

(modelled by noisy data following Cauchy distribution). It was shown, that the 

IRLS-FT method using weights calculated by Steiner’s MFV method gives very 

good estimation results for both Gaussian and Cauchy distributed data noises. 

Compared to DFT it can result in an order of magnitude improvement in accuracy 
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of the spectrum estimation. Both LSQ-FT and IRLS-FT methods can be applied in 

non-equidistant measurement arrays. 
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Table Captions 

 

Table 1 Characteristic distances between the noise-free and noisy data in time- and frequency domains, respectively. 

Table 2 Characteristic distances between spectra calculated by means of noisy and noise-free data using DFT, LSQ-FT and IRLS-

FT. 

 

Tables 

 

Table 1 Characteristic distances between the noise-free and noisy data in time and frequency domains, respectively. 

 
data set I.  

(Gaussian noise) 

data set II. 

(Cauchy noise) 

 Distance in time domain          (d) 0.1032 0.4554 

 Distance in frequency domain (D) 0.0103 0.0457 

 

 

Table 2 Characteristic distances between spectra calculated by means of noisy and noise-free data using DFT, LSQ-FT and IRLS-

FT. 

 DFT LSQ-FT IRLS-FT 

Data set I.  

(Gaussian noise) 
0.0103 0.00613 0.00649 

Data set II.  

(Cauchy noise) 
0.0457 0.0229 0.00513 

 

Table
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Figure Captions 

 

Fig. 1 The noiseless time-domain signal. 

Fig. 2 The noiseless frequency domain spectrum. 

Fig. 3 The noisy signal containing Gaussian noise (data set I). 

Fig. 4 The DFT spectrum of data set I. 

Fig. 5 The noisy signal containing noise of Cauchy distribution (data set II). 

Fig. 6 The DFT spectrum of data set II. 

Fig. 7 The LSQ-FT spectrum of data set I. 

Fig. 8 The LSQ-FT spectrum of data set II. 

Fig. 9 The IRLS-FT spectrum of data set II.  

Fig. 10 IRLS–FT result in the time domain (inverse Fourier transform computed by using IRLS-FT estimated spectrum). 
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Figures 

 
Fig. 1 The noiseless time-domain signal. 

 

 
Fig. 2 The noiseless frequency domain spectrum. 
  



 

Fig. 3 The noisy signal containing Gaussian noise (data set I). 
 

 
Fig. 4 The DFT spectrum of data set I. 
  



 
 
Fig. 5 The noisy signal containing noise of Cauchy distribution (data set II). 

 

 
Fig. 6 The DFT spectrum of data set II. 
  



 

 
Fig. 7 The LSQ-FT spectrum of data set I. 

 
Fig. 8 The LSQ-FT spectrum of data set II. 
  



 
Fig. 9 The IRLS-FT spectrum of data set II. 

 
Fig. 10 IRLS–FT result in the time domain (inverse Fourier transform computed by using IRLS-FT estimated spectrum). 
 


