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ABSTRACT 

 

Stiffened plates and shells are the most characteristic structural types for optimization, since 

the number of stiffeners influences the cost significantly. A previous study has shown that a 

plate stiffened on one side with open section longitudinal ribs subject to uniaxial compression 

is not so economic than a cellular one. In the present article a plate orthogonally stiffened on 

one side is optimized. The orthogonal grid of ribs is more economic, since the transverse 

stiffeners increase significantly the overall buckling strength of the plate. Constraints on 

overall buckling and on stiffener induced failure are considered. The cost function includes 

material, welding and painting costs. 

 

Keywords: plate buckling, stiffened plates, welded structures, structural optimization, 

fabrication cost, minimum cost design 

 

1  INTRODUCTION 

 

The main requirements of a modern engineering structure are the safety, fitness for production 

and economy. In the optimum design process the safety and producibility are fulfilled by 

design and fabrication constraints as well as the economy is achieved by the minimization of a 

cost function. 

 

We have developed a cost calculation method mainly for welded structures, thus, we are able 

to determine the economy of a structural version and to compare the costs of these versions to 

each other [1]. Welded stiffened plates are applied in many steel structures. Our aim is to 

determine the most economic stiffening of a uniaxially compressed plate. Our structural 

model is a rectangular steel plate with simply supported edges, stiffened orthogonally by 

halved rolled I-section stiffeners welded to the base plate by double fillet welds.  

 



In our other study we have compared the costs of a plate stiffened on one side and a cellular 

plate both stiffened longitudinally and loaded by uniaxial compression [2]. Economic 

stiffening has been determined for an orthogonally stiffened plate loaded by bending [3]. 

 

In the optimization process the base plate thickness, as well as the number and height of 

stiffeners in both directions are sought, which fulfil the buckling constraints and minimize the 

cost function.  

 

The applied mathematical method is the particle swarm algorithm.  

 

The classic buckling stress is derived from the Huber’s differential equation [4]. This stress is 

modified  taking into account the effect of residual welding stresses and initial imperfections. 

 

The cost function includes the material and fabrication (welding and painting) costs and is 

formulated according to the fabrication sequence. A series of rolled I-section stiffeners is 

selected according to the ARCELOR catalogue [5]. The flange width and thickness, as well as 

the web thickness are expressed by the section height using approximate formulae (see 

Appendix), thus, in the optimization only five unknowns should be determined. 

 

2  PROBLEM FORMULATION 

 

Determine the economic orthogonal stiffening of a rectangular plate with given main 

dimensions a0 and b0, subject to a uniformly distributed uniaxial compression of intensity Nx 

(Figure 1), which fulfils the design and fabrication constraints and minimizes the cost 

function. Halved rolled I-section stiffeners are welded to the base plate by double fillet welds. 
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Figure 1 - Orthogonally stiffened plate loaded by uniaxial compression 



 

Numerical data (Figure 1): a0 = 24000, b0 = 8000 mm, Nx = 3x107 [N], steel yield stress fy = 

355 MPa, elastic modulus E = 2.1x105 MPa, shear modulus G = 0.8x105,  density ρ = 

7.85x10-6 kg/mm3, selected rolled I-sections UB profiles.  
 

Unknowns to be optimized: base plate thickness t, sizes and number of stiffeners in both 

directions: hy, hx, ny, nx. Ranges of unknowns: 4 < t < 20 mm, 152 < h < 1016 mm, 4<n<nmax, 

nmax are determined by the following fabrication constraints: 
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The other dimensions of a halved rolled I-section are given by approximate functions of h in 

Appendix.  

 

       fthh 21  .      

 

The discrete values of  h  are as follows: 152.4, 177.8, 203.2, 257.2, 308.7, 353.4, 403.2, 

454.6, 533.1, 607.6, 683.5, 762.2, 840.7, 910.4, 1016 mm. 

 

The maximum values of ni is given by the fabrication constraints Eq. (1).  

 

The nmax values are given in the Table 1. 

 

Table 1. nmax- values for rolled I-sections, dimensions in mm 

 
h 152.4 177.8 203.2 257.2 308.7 353.4 403.2 454.6 533.1 607.6 683.5 762.2 840.7 910.4 

b 88.7 101.2 133.2 101.9 101.8 126.0 142.2 152.9 209.3 228.2 253.7 266.7 292.4 304.1 

n 20 19 18 19 19 18 18 17 15 15 14 14 13 13 

 

3  GEOMETRIC CHARACTERISTICS OF STIFFENERS 

 

Effective cross-sectional areas (i = x,y) 
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Effective plate widths  in two directions for global plate buckling according to DNV [6] 
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The distances of the gravity centres Gi 
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 The moments of inertia  
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The bending stiffnesses 

 

      
x

x
y

y

y

x
s

EI
B

s

EI
B  ; .     (7) 

 

4  DESIGN CONSTRAINTS 

 

Overall buckling constraint according to DNV  [6] 
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It can be seen from the load-carrying capacity formula NE that, when  a0>b0, to have a larger 

NE, Bx  (hx) should be larger than By (hy). 

 

Constraint on stiffener induced failure according to DNV [6] 
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where 
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where 
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The constraint is formulated as 
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5  COST FUNCTION 

 

The cost function includes the cost of material, assembly, welding as well as painting and is 

formulated according to the fabrication sequence. 

 

The cost of material 
 

      0.1;2  MMM kVkK   $/kg.    (27) 

 

Welding of the base plate from butt welds (3 in direction of a0 and 3 in direction of b0) (SAW 

- submerged arc welding) [1]: 
 

The fabrication cost factor is taken as kF = 1.0 $/min, the factor of complexity of the assembly 

2W : 

 

       0000 333.116 batCVkK n

WWF   ,   (28) 

 

       V0 = a0b0t,     (29) 

 

     for  t < 11    2;101346.0 3   nxCW ,           (30a) 

 

     for  11t   904.1;101033.0 3   nxCW .           (30b) 

 

Welding (nx-1) stiffeners to the base plate in y direction with double fillet welds (GMAW-C - 

gas metal arc welding with CO2): 
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aWx = 0.4 twx  but  awx.min = 3 mm, 
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Welding of (ny – 1) stiffeners to the base plate in x direction with double fillet welds. These 

stiffeners should be interrupted and welded with fillet welds to the stiffeners in the y direction. 
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aWy = 0.4 twy  but  aWy.min = 3 mm, 
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Painting 

 

       PPPP SkK      (36) 

 

kP = 14.4x10-6 $/mm2 ,  ΘP = 2, 

 

Surface to be painted 

 

    SP = 2a0b0 + a0 (ny – 1)(h1y + 2by) + b0 (nx – 1)(h1x + 2bx)  (37) 

 

 

The total cost 

 

      K = KM + K0 + KW1 + KW2 +KP   (38) 

 

 

6  THE PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM 

 

The general optimization problem to be considered here is therefore: 
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subject to the inequality and equality constraints:       (40) 
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where f(x), gj(x) and hj(x) are scalar functions of  the real column vector x. For generality 

equality constraints, hj(x)=0, j=1,2,…,r are also specified, although they are not explicitly 

imposed in this study. The optimum solution is denoted by x* with associate optimum 

function value f(x*). 

 



Particle Swarm Optimization (PSO) techniques belong to a relatively new class of 

evolutionary based search procedures that may be used to find the optimum solution x* of the 

general optimization problem. The original PSO algorithm, proposed by Kennedy and 

Eberhardt [7], was inspired by the modelling of the social behaviour patterns of organisms 

that live and interact within large groups. In particular, PSO incorporates swarming 

behaviours observed in flocks of birds, schools of fish, or swarms of bees.  

 

A PSO algorithm is easy to implement in most programming languages, since the core of the 

program can be written in a few lines of code. It has been proven to be both fast and effective, 

when applied to a diverse set of optimization problems. PSO algorithms are especially useful 

for parameter optimization in continuous, multi-dimensional search spaces [8].  

 

In performing a search in the multi-dimensional space associated with the optimization 

problem of the form (39,40), the PSO technique assigns direction vectors and velocities to 

each member (particle) of the swarm at their current positions. Each particle then “moves” or 

“flies” through the search space according to the particle’s assigned velocity vector, which 

may be influenced by the directions and velocities of other particles in its neighbourhood. 

These localized interactions with neighbouring particles, propagate through the entire 

“swarm” of particles and results in the swarm as a whole moving to regions of the space 

closer to the solution of problem (39,40).  

 

The extent to which a particular particle influences other particles is determined by its so-

called “fitness” along its trajectory of candidate solution points. The “fitness” is a measure 

assigned to each potential solution, and it indicates how good a particular candidate solution is 

relative to all other solution points. Hence, an evolutionary idea of “survival of the fittest” (in 

the sense of Darwinian evolution) comes into play, as well as a social behaviour component 

through a “follow the local leader” effect and emergent pattern formation [9]. 

 

 

6  OPTIMIZATION AND RESULTS 

 

The optima of unknowns are as follows. 

 

hy = 353.4, hx = 533.1, t = 12 mm, ny = 14, nx = 5. The constraints are fulfilled, since σ = 292 

< σcr = 299 MPa and  σS = 230 < σacr = 243 MPa. The minimum cost is K = 51087 $. 

 

It should be mentioned that the calculation of the critical buckling stress (Eqs 8, 9) according 

to DNV [6] takes into account the effect of residual welding stresses and distortions. The 

considered measure of welding distortion is about L/1000 where L is the span length. This 

distortion can be approximately calculated using our formulae published earlier [10]. 

 

For the optimum solution with fillet weld size  aw = 4 mm, for double fillet welds taking a 

factor of 1.5:   14285.595.1 2  wT axQ J/mm, 36.94636.100, Gxz mm, 
810658.1 xI x  mm4, b0 = 8000 mm, 

6
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1000
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8

0

2

0 bCb
f  . Thus, the calculation 

of the critical buckling stress gives safe values. 

 

 



7  CONCLUSIONS 

 

Orthogonally stiffened plates are important elements of welded structures, thus their 

minimum cost design influences the economy of these structures significantly. The basic 

formula for overall buckling strength shows that the transverse stiffening increases the plate 

strength in a great measure.  

 

In the optimization process the height and number of halved rolled I-section stiffeners as well 

as the base plate thickness is sought, which fulfil the design constraints and minimize the cost 

function.  Both the global buckling and the stiffener induced failure constraints are active. 

 

The particle swarm algorithm has been proved to be efficient in finding the optima.  

 

An approximate calculation shows that the deflections caused by the shrinkage of longitudinal 

welds are smaller than the deflection taking into account as initial imperfections in the 

buckling strength formulae. 
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APPENDIX 

 

Approximate formulae for UB profile dimensions 

 
Calculation of b 

 

y=a+blnx+c/lnx+d(lnx)^2+e/(lnx)^2+f(lnx)^3+g/(lnx)^3+h(lnx)^4+i/(lnx)^4  

 

a= 4071797665.515043  

b= -377581103.813262  

c= -25351511152.9463  

d= 17442666.41988002  

e= 92925416774.55347  

f= -155449.0539314809  

g= -187087676930.7058  

h= -10894.44641480538  

i= 160167765716.8299  

 
Calculation of tf 

 
y=a+bx+cx^2+dx^3+ex^4+fx^5+gx^6+hx^7+ix^8 

 

a= -26.93815960004096  

b= 0.7030053163805572  

c= -0.00569333794408951  

d= 2.383106250400329E-05  

e= -5.605511588090933E-08  

f= 7.662794270183799E-11  

g= -5.902409057606285E-14  

h= 2.267417890058806E-17  

i= -2.999371273581411E-21  

 

Calculation of tw 

y=a+bx+cx^2+dx^3+ex^4+fx^5+gx^6+hx^7+ix^8  

 

a= 4.598131596507252  

b= -0.1667245080692302  

c= 0.002662252638593643  

d= -1.662919423768273D-05  

e= 5.42570607199179D-08  

f= -1.003562930723944D-10  

g= 1.063362616433473D-13  

h= -6.028516559742138D-17  

i= 1.419727612597333D-20  

 


