Coal Resources and Supply Conditions in Different Countries

Em. H. C. Mult, Ing. Ferenc KOVÁCS
1,2 Member of Hungarian Academy of Sciences
Research Group of Geo Engineering, Hungarian Academy of Sciences
bgtkf@uni-miskolc.hu

ABSTRACT

Nowadays (2008, 2010), the rate of coal in the world’s electricity production of 20·10^{12} kWh/year is a round 40%. It is similarly high in leading coal producer countries: 47% in both the US and Germany. For the future (2020, 2030, 2050), long-term forecasts/plans predict a similarly high rate: 38% in the US, a round 50% in Germany. With the world average being predicted to be 43% in 2035 with a production of 35·10^{12} kWh/year. The present (2010) coal production of 6.3 billion t/year may increase to 11 billion t/year by the end of the 21st century with the century average amounting to 8 billion t/year.

On the basis of official reports and expert estimations, the forecast data for both geological and, in greater detail, explored industrial coal resources (that can be economically exploited) are analyzed. The wide range of professional estimations gives approximately identical figures: the world’s industrial coal resources are 700 -1,000 (1,200) billion tons while estimated geological resources amount to 5,000 – 8,000 (15,000) billion tons.

On the basis of the production (demand) data forecast for the 21st century, the average period of supply in industrial resources is 200-300 years in the large coal producer countries (over 1,000 years in Russia) while the world average is 160 years due to China’s figure of 40 years attributable to exceptionally intensive production there. The average of the 8 leading coal producer countries (China’s 40 year figure included) is approximately identical with this while the average of 7 countries (China excluded) is a round 400 years.

On the basis of the estimated geological resources (5,000 – 8,000 billion tons) and subject to further successful explorations, period of supply may even be 500-800 years.

With a 10 Mt/year production volume, Hungary has supplies for 330 years, and with an unjustifiably low 4 Mt/year production volume, for 800 years.

Keywords: Industrial coal resources, coal deposits, supply

1. INTRODUCTION

According to publication [1], the rate of coal in electricity production is quite considerable in the current period (2008-2010). In the world’s electricity production of 20·10^{12} kWh/year, the rate of coal is 41%, in the US, it is 47% for a 3.7·10^{12} kWh/year production while in Germany, it is 43% for a 0.62·10^{12} kWh/year production volume.

When planning for the future, countries prepare long-term forecasts. According to the global forecast for 2035, coal will be responsible for 43% of the 39·10^{12} kWh/year production volume. The US forecast for 2050 takes into account a 38% coal rate for the 5.0·10^{12} kWh/year production. For the period following 2020, the basic German forecast takes into account a 50% coal rate, which may even be higher due to the reduction of the production of nuclear power plants (close-downs) also depending on the amount of imported gas. [2, 3, 4]

There are different estimations concerning fossil fuel (coal, lignite, mineral oil, natural gas) resources. As regards mineral oil, conventional world supply is estimated to last for 30-40-50 years while the same figure for natural gas is 50-60-70 years. The exploration and exploitation of non-conventional resources (oil shale, oil sand, gas shale, and gas hydrate) may significantly expand supply opportunities. In case of coal (hard coal, brown coal, lignite), every estimation indicates significantly larger resources and longer supply periods.

With regard to the above forecasts taking into account a 30-40-50% coal rate in electricity production, this paper gives an overview of what data the different experts and institutions have published about the world’s coal resources. In most of the cases, the figures for industrial coal resources (that can be economically produced with the currently available technologies) are given but for some authors, the figures for geological resources and for other expert estimations, the period of supply (how long it will be enough) are presented for the production volume at the time of estimation. As regards the issue of saving/depletion of coal resources, it is investigated what supply volumes can be taken into account for coal, and for how many generations, they will be sufficient.
As early as at the beginning of the 20th century, this was written [5]: 'There is hardly any other issue in natural sciences that scholars would deal with so much as the question of fuels: what will happen if there is no longer any hard coal in the layers of the Earth…... and hard coal is running out.' The authors then made the following forecasts:

- The hard coal resources of Great Britain (one hundred million tons) will run out in 435 years...
- Belgium, Prussian Silesia and Russia possess the largest hard coal resources but even these will not be able to satisfy rising demand for longer than 500 years,
- According to Hall, North America may meet current world demand for ten thousand years.

Fifty years later (in 1944), Kálmán Sztrókay [6] wrote the following on the basis of 1929 data: the brown coal resources of the Earth amount to 3,000 billion tons, of which industrial resources are 400 billion tons, and black coal resources give 4,400 billion tons, of which industrial resources amount to 300 billion tons. The figure for the resources of the five continents is 5,662 billion tons in black coal equivalent of 7,000 calories. With the 1929 production volume of 1.25 billion tons, the industrial resources of 700 billion tons (present-day estimates indicate an identical figure for the minimum amount of current industrial resources) meant supply for 570 years (early 2000s).

Now, let us investigate current 'official' and scientific figures and estimations.

According to data from the Hungarian Geological Service [7], the world’s industrial black coal resources are 519 billion tons while brown coal resources are 465 billion tons so with a 4.3 billion ton production volume, the 984 billion tons of resources provide supply for 228 years.

According to data from György Vajda [8,9], the world’s industrial black coal resources amount to 510 billion tons and brown coal resources are 475 billion tons, altogether 985 billion tons, which ensures supply for 219 years, taking a production volume of 3.6 + 0.9 = 4.5 billion tons/year into account. The coal resources of eight prominent countries (Russia, USA, China, Germany, India, Poland, and South Africa) amount to 817 billion tons. He indicates the world’s geological resources to be 5,000 billion tons.

Estimating the world’s geological resources to be 4,773 billion tons, the author of publication [10] gives a 136-year period of supply for industrial hard coal resources and a 293-year period of supply for lignite resources.

Investigating the expected prospects of coal production, Klaus Brendow [11] gives the figure 510 billion tce (7,000 calories) for the world’s black coal resources and 200 billion tce for brown coal resources, which are 710 billion tce altogether, equivalent to 160- and 460-year periods of supply and an average 196-year period of supply. His figures for geological resources are the following: 6,000 billion tce black coal and 2,700 billion tce brown coal, altogether 8,700 billion tce. Adding up the production forecasts of the different countries, Klaus Brendow expects a 7 billion ton coal production volume for the year 2030 while the World Energy Council (London) gives the coal production forecast of 11 billion tce for the year 2100.

In his study, István Lakatos [12] gives the figure of 1,083 billion tons for industrial coal resources with a 40% rate of black coal.

According to Shashi Kumar’s data [13], the world’s industrial coal resources (2002) amount to 951 billion tons black coal and 465 billion tons brown coal. He gives the supply data of 204 and 209 years.

The author of publication [2] estimates the world’s industrial coal resources to be at least 900 billion tons (Mehr als 900 Mrd Kohlevorräte, 2004), of which the US accounts for 250, Russia for 157, China for 120, India for 80, Australia for 75, Germany for 65, South Africa for 50 and the Ukraine for 30 billion tons, 827 billion tons altogether, other prominent contributors being Brasil, Poland, Indonesia and Colombia.

According to V. S. Kovalenko’s data based on former explorations [14], in the world, Russia possesses the second largest coal resources after the US. Russian geological resources amount to 5,335 billion tons, which is 36% of the world’s geological resources according to him. This indicates the world’s geological resources to be around 15,000 billion tons.

With the above 800-1,000 (1,200) billion ton data of the world’s industrial coal resources/reserves (economically exploitable with current technologies) taken from official publications and expert estimates, a supply period of 150-230 years are estimated by experts. Even with the current production volume of 6.3 billion tons and the production volumes of 7 billion tons estimated for 2030 and 11 billion tons for 2100, taking into account an average production volume of 8 billion tons/year for the
21st century, the currently registered industrial resources will safely meet the demands forecast for this century.

With regard to the currently known (estimated) geological resources of 5,000 – 15,000 billion tons and taking into account the expected development of production technologies, further industrial resources of 2,000 – 5,000 billion tons may be forecast for the period after the 21st century, providing supply opportunities for future generations. In view of all this, it is hardly justified to speak broadly about ‘ever decreasing fuel resources’ – at least with respect to coal types.

In addition to world data and forecasts, here are some data concerning coal in Hungary. [7]

<table>
<thead>
<tr>
<th>Coal type</th>
<th>Geological resources M (10^6) tons</th>
<th>Industrial resources M (10^6) tons</th>
<th>Reserves M (10^6) tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black coal</td>
<td>1,950</td>
<td>200</td>
<td>450</td>
</tr>
<tr>
<td>Brown coal</td>
<td>2,170</td>
<td>195</td>
<td>180</td>
</tr>
<tr>
<td>Lignite</td>
<td>4,400</td>
<td>2,930</td>
<td>730</td>
</tr>
<tr>
<td>Total</td>
<td>8,520</td>
<td>3,325</td>
<td>1,360</td>
</tr>
</tbody>
</table>

Present annual coal production (2010, 2011) is 8.0 – 8.5 M tons of lignite and 1.5 – 2.0 M tons of brown coal. Although emphasizing ‘a commitment to coal in principle’, the National Energy Strategy [14] takes into account a decreasing future coal rate of 4-5% in electricity production in spite of the present rate of 14%. This decrease cannot be supported with rational arguments and is totally unjustified.

The level of supply of a country or the world with utilizable raw minerals, namely with coal, with a given production volume, also depends on the number of the population. Next to the data of industrial coal resources, the following table provides the figures of annual production and the number of population, and calculates the per head amount of industrial resources and the expected supply period subject to current production volume.

<table>
<thead>
<tr>
<th>Country</th>
<th>Total industrial coal resources M (10^6) tons</th>
<th>Production volume M (10^6) tons/year</th>
<th>Population M (10^6)</th>
<th>Industrial coal resources per head t/person</th>
<th>Period of supply years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungary</td>
<td>3,325</td>
<td>10</td>
<td>10</td>
<td>330</td>
<td>330</td>
</tr>
<tr>
<td>US</td>
<td>250,000</td>
<td>932</td>
<td>310</td>
<td>800</td>
<td>270</td>
</tr>
<tr>
<td>Russia</td>
<td>157,000</td>
<td>140</td>
<td>142</td>
<td>1,100</td>
<td>1,120</td>
</tr>
<tr>
<td>China</td>
<td>120,000</td>
<td>3,162</td>
<td>1,321</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>India</td>
<td>80,000</td>
<td>400</td>
<td>1,210</td>
<td>70</td>
<td>200</td>
</tr>
<tr>
<td>Australia</td>
<td>75,000</td>
<td>353</td>
<td>21</td>
<td>3,570</td>
<td>210</td>
</tr>
<tr>
<td>Germany</td>
<td>65,000</td>
<td>190</td>
<td>82</td>
<td>790</td>
<td>340</td>
</tr>
<tr>
<td>South Africa</td>
<td>50,000</td>
<td>225</td>
<td>44</td>
<td>1,140</td>
<td>220</td>
</tr>
<tr>
<td>Ukraine</td>
<td>30,000</td>
<td>80</td>
<td>46</td>
<td>650</td>
<td>375</td>
</tr>
<tr>
<td>Total and average for 8 countries</td>
<td>827,000</td>
<td>5,482</td>
<td>3,176</td>
<td>260</td>
<td>150</td>
</tr>
<tr>
<td>World</td>
<td>1,000,000</td>
<td>6,300</td>
<td>7,000</td>
<td>140</td>
<td>160</td>
</tr>
</tbody>
</table>

On the basis of the data per head (t/person) (specific values) and the period of supply figures (years), the following conclusions can be made:

- In the world’s 8 leading coal producer countries, the amount of coal resources per
head is practically twice as much as the 'world average' (260/140,) calculated from currently known (estimated) data. (Obviously, in Asia, Indonesia, Africa or South America, considerable resources may still be discovered.)

- The period of supply calculated for the world’s 8 coal producer countries is practically identical with the world average (150/160) although figures reveal quite significant differences between the individual countries (see for example, Russia or China), similarly to the data of industrial coal resources per head (t/person). (Due to export/import data and rates, use parameters may differ for the individual countries.)
- In Hungary, the amount of industrial coal resources per head as well as the supply parameter calculated on the basis of production volumes 10 M t/year, and especially 4 M t/year, well exceeds the world average. In view of this, it is unjustified that the National Energy Strategy only takes into account a 5% coal rate in electricity production forecasts.

REFERENCES
[1] Kovács, Ferenc: Szén arányok a villamosenergia termelésben, a klímaok valódisága ('Coal rates in electricity production. The reality of climate causes') (manuscript)


[12] Lakatos, István: Perspectives of Oil and Gas Production/Consumption in the 21st Century. (manuscript)
