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EXISTENCE AND UNIQUENESS OF POTENTIAL FLOW
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OF AEROFOILS
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Abstract. Martensen proved that the only nontrivial solution of the homogeneous adjoint
equation to the Fredholmian integral equation of the second_kind, written for the potential flow
around a cascade of aerofoils, is the constant function. In this paper a simple proof is given to
the theorem, furthermore, it is extended for the related singular integral equation of the first
kind and for the adjustable cascade of aerofoils.

1. Intreduction

Impellers or runners of axial-flow turbomachines, e.g. pumps, turbines and fans, usually have
adjustable blades in order to attain high efficiency over a wide range of flow rate domain.
Devices for prewhirl control of pumps and the wicket gates in turbines are both equipped with
adjustable blades. By turning these blades a new arrangement is created. A designer faces a
similar problem when choosing the number and chord length of blades, and hence the cascade
solidity, to give optimal blade load. It often happens that three or four versions of impellers with
different number of blades are produced in order to meet the requirements. The proper version
is finally chosen by experimental testing. It would be much more economical, however, to study
the effect of cascade solidity on the hydraulic parameters of turbomachines while designing the
bladings, i.e. before manufacturing.

The flow around the blading of axial-flow turbomachines can usually be modelled with ac-
ceptable accuracy by using a straight cascade of blades. There are several methods available for
the determination of an attached flow through a straight cascade of foils assuming incompressible
inviscid fluid [1-7].

When modifying the cascade geometry by adjusting the blades, the usual procedure is to
repeat most of the computational work. This paper suggests a method by which we can avoid
the necessity of repeated applications of the direct computational procedure for each cascade
geometry. It is also an extension of the theory published earlier [8], and is a more concise version
of the author’s thesis [9]. We are not golng to deal with computational details here, the objective
of this paper is to investigate existence and unicity of the solution.



54 L. Baranyt

2. Derivation of the governing equations

In this paper we deal with the frictionless solenocidal attached flow of an incompressible fiuid
around the blades of a straight cascade. The equation of continuity and that of expressing that
flow is vortex free can be written as follows:

dw;,  Gwy

dz + By =0 (1)
dw, Owy
8z dy =0 (2)

Here w, and w, are the r and y components of the relative velocity vector measured in the
co-ordinate system fixed to the rotary or stationary blades (see Fig. 1). It is easy to see that
(1) and {2) represent the Cauchy-Riemann equations for the conjugate complex velocity

W= Wy — wwy, {3)

where 1 is the imaginary unit, 1 = +/-1.
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Fig. 1. Notations for a straight cascade of aerofoils

Since the components of the conjugate complex velocity satisfy the Cauchy-Riemann equa-
tions, W is an analytic function of the complex variable

z=z+wy. (4)

Hence Cauchy’s integral theorem and Plemelj’s formulae {11} can be applied to the conjugate
complex velocity which finally resuiis in (see [2, 3, 9])

wis) + %ﬁ]\'(cm’)ﬁ(q’)dc' = Wiy, (5)

where ¢ and ¢’ are complex variables along contour C of the foil (see Fig. 1), and Wy, .is the
mean value of upstream and downstream conjugate complex velocities, i, ard s,

Weg = %('{D'l + g ). (6)
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In {5} refers to the variable point of integration. If ¢’ # ¢ the kernel function can be written as
- T T
K5, <) = }-coth ?(c ~<'), (1)

where ¢ is the blade spacing. [t can easily be seen that {5) is a complex variable integral equation
of the second kind for the conjugate complex velocity around contour €. In the knowledge of
W(s) along C, the conjugate complex velocity W(z) at an arbitrary inner point of the flow can
also be determined [3, 9], although we do not intend to deal with this problem here.

Equation (5) can be divided into two scalar equations: one in the tangential and the other
in the normal direction to the aerofoil. This results in two real integral equations for the centour
velocity as a function of arc length s. Then we wiil introduce pelar angle ¢, shown in Fig. 1,
instead of arc length s, and the transformed dimensionless velocity g() defined by (see [3, 9])

wi(s)ds = q()w,dyp, (8)

where w; is the tangential component of the velocity along € and w1, is the z component of the
upstream velocity (see Fig. 1). After introducing this transformation into our equations, the
following two integral equations are obtained

2
gy} + %/K(so.so’)q(«p’)dso’ = f(¥), (9)
v}
mr
- [ Ble ey = o), (10)

where kernel functions K{p,¢') and H(yp,¢') for v £

K(p, ')y = THLIsinh Fle(0) - 2(e)] - d () sin Zly(p) — y(e)]

bRl e e Eie) - aey] T 0P (D)

and

rn _ TE(p)sinh Ze(w) — 2(¢) + 9{0) sin 22 @)~y ]
Hipoly= T { zi[ () ) y(sagﬂ T lvle) ’y(w )] + Tie). (12)
t cosh FH{z(p) ~ 2(9)] - cos Zy(p) ~ y(¢")] t
Carrying out the limiting process ' — ¢ in Eqs. (11) and (12) while repeatedly applying the
I" Hospital’s rule yields

#(y)2(e) — E(0)i(p) | .
- . + — [l
EP+he)r T e
limpo(p - " )H (i, 0" = 1. (14)
The right-hand sides (RHSs) of Egs. (9) and (10) can be written as follaws

. . s 1
img L, K, ) = 5 (13)

fle) = 29(p)tan x; + 2&(g), (15)

hp) = 2i(p)tan x| - 2(). (16)

In these equations (), y(w)y (), §(¢), #(p) and #(w) are profile co-ordinates and their
derivatives with respect to w.

It can easily be seen from the above eqiations that in the limiting case when ' tends to ¢,
kernel function A (') is bounded but kernel function H{p,¢’) has a first order singularity.
Hence (9) is a Fredholmian integral equation of the second kind and {10} is a singular integral
equation of the first kind.
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It is known that equations for potential flow around a single aerofoil can be obtained if we
carry out the limiting case when the blade spacing t tends to infinity in the above equations, see
[3, 9]. In this case the equations are similar to (9)-{16) but the kernel functions are different.
Due to lack of space we do not intend to deal with this problem.

In principle any of the two Eqs. (9) and (10) can be used for the solution of flow arcund a
cascade of aercfoils or that of the single aerofoil. However, as has already been stated (see [6])
it is more advisable to choose integral equations of the second kinds for numerical treatment,

e. (9). The author’s own experiences also confirmed this statement.

3. Existence and uniqueness of the solution

Martensen [1] has proved that the homogeneous adjoint equation to {9)
17
Ble)y+ — [ K (¢ @)ble)dy’ =0 (17)
0

has a B(p)} = const noutrivial solution, hence the {ollowing relation holds true for kernel function
K, ¢):

Zn
1 p
L /I\'r(go,tp Jde' = 0. (18)

Martensen’s proof is a very complicated cne. Let us suggest a simpler proof.
As it is known [10], the kernel function has first order singularity as ¢’ tends to ¢, and can
be written

i3 T i IS A
2 coth 2c — "o s o :
tCOht(q ') q-q’+3(t) {¢~¢")+0(3), {18)
where o stands for the order of magnitude. Hence
P U S N
G(c,()-tcotht(c ") o {20)

is an analytic function along curve C since the principal part of its Laurent series vanishes [11].
Cauchy’s theorem states that for any analytic function

jéG{c,c')dc =0, (21)

where C is an arbitrary non-intersecting rectlinear closed curve boundlng a singly connected
domain [11]. According to Cauchy’s integral formula

1
}g -dg = —m,
cs — 9

when ¢ lies on such a curve C the integral along which is taken in clockwise direction. Combi-
nation of this latter equation with (20) and {21} yields

71+ }gztr—coth ftr_(( - ¢")ds = 0. (22)
c

By introducing polar angle ¢ instead of arc length s along contaur C and separating the
equation into real and imaginary parts we obtain

w4 [ Ko =0, (23)
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P14
[ He.@)s = 0. (24)
0

Equation (23) is m times of Eq. (18) to be proved. On the other hand {24) expresses the fact
that the constant functicn is also a nontrivial solution of the homogeneous adjoint equation to
Eq. (10). With this Martensen’s theorem is proved.

As the homogeneous adjoint equation (17) has nonzero solutions, according to Fredholin's
theorewns the original integral equation (9) can have solutions ouly and if only the function on
the RHS of (9) is orthogonal to the eigenfunctions of the homogeneous adjoint equations. In this
case it has infinite number of solutions. Since these eigenfunctions are the constant functions,
the orthogonality condition can be written as

r

[ Hovio =0 (25)

]

It can easily be seen that {25) holds true since

2r x
dy [ dr
do = 2t 'fﬁd 2 [ 2240 = 24 jfd Qjéd = 0. 2
j{,f(so) ¥ “‘XLU 2P ojdwv aax pdy +2¢de (26)

Consequently, integral equation (9) has an infinite number of different solutions differing from
each other only by additioral constants. The real solution can be chosen from this infinite set
of solutions by applying the Kutta condition. This conditian expresses the fact that the trailing
edges of the blades are unloaded.

In case of a single aerofoil the proof can be done in a similar way.

4. Adjustable cascades

So far the stagger angle and blade spacing were fixed values. We shall consider these quantities
now as independent variables, and study their effects upon the cascade flow, while the blade
shape is kept unchanged. In this way, the turning of the blades of a rotor correspording to a
change of flow rate can be modelled. We note, on the other hand, that a knowledge of the effect
of blade spacing ¢ on the flow may be of value when finding the proper value of blade load. Let
us see Eq. (9) in more detail:

2n
1 . p
gt A, t) + ;fh(so.tp A (0 Ay’ = Flipr M) (27)
0

Since the procedures built up for investigating the effects of A and ¢ upon the cascade flow
are very similar in nature, we introduce a new variable £ which can represent either A or £, It
seems straightforward to expand Eq. (27) inte Taylor series with respect to ¢ around its fixed
value 5. We have

] . 2r ) . . . . .
L Dgle—eg) 1 TE 9N (£ —co) ondigle —gy) r e f (e - gg)
Lo T ;0[,_:0 el %5 T “%55 TR

The derivatives in (28) are to be taken at & = 4.
We note that the mutual effects of X and  can also be investigated. In this case, Eq. (27)
should be expanded into Taylor's series with respect to the two independent variables X and
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! around their fixed values Ay and 5. The author derived the basic equations for this case,
too. This method, however, unduly increases the number of equations to be solved and the
subsequent numerical work. On the other hand, the separate study of the effects of the single
parameters A and ¢ upon the flow is usually more important for the users. That is the reason
why we do not intend to present that problem in this paper.

Let us return to Eq. (28). By separating the different powers of (£ - £4), this equation can be
resolved into an infinite set of integral equations for the derivatives of the transformed velocity
g with respect to €. The first few equations of this set are as follows:

ir .
F'q(@ie) 1] o Telelie) L o .
et + = I‘(‘P!“P i€a) 3¢t dyp = FI(LP!E:U) (1 = 031121‘31“-)»

where
Fy(wien) = flwreon),

f(wie) 1 731\'(%99’;5)
r O

. _ L '
Fl((fgrEU)_ (95 85 q((p,_.g)dtp,

ir
3% f 1 af i€
Ftpion) = L8 L 10009

(e, ' €) dqly's €)
¢) +2 de Je 4

Falpieg) = @ie)+ 3

#fipie) 1 7[81ﬂ'3{w,w*;e)
et de

( FH (.0 €) Bal s 1y
de3 wo de3 7

S (g, 5) &
_ ﬂ_/ (i @’ £) Q((}O 5} etc. (29)

de 92

The different orders of derivatives in Eqs. (29) are to be taken at {¢ — £¢). All of these equations
have the same kernel and their RHSs contain solutions of the preceding equations and the
derivatives of the kernel function. The first equation in (29) is the one relating to a cascade with
fixed value of A and t. We note that the Oth derivative of a function is the function itself.

Let us investigate the existence and uniqueness of the solutions of system (29). It can easily
be seen that every equation in the set (29} has the same structure as (9), which relates to a
straight cascade with fixed values of A and £. Hence the homogeneous adjoint equations to Eqgs.
(29) coincide with (17). That is why the constant function is a nonzero solution of each of these
adjoint equations. According to Fredholm’s theorems the original integral equations {29) can
have solutions only in the case if the RUSs of Eqs. (28} are orthogonal to the eigenfunctions (here
constant) of the homogeneous adjoint equations. The orthogonality condition can be written as

[ﬂ-(t,o;e)dcp =0 (i=0,1,2,..). (30)

By substituting the RHSs of Eqs. (29) into (30), two types of conditions are obtained:

ft'?‘f(%i)

65‘ Y = O (z = 01112!"')) (31}

0

2w 2
/f‘“ ©.958) P sy g (ij+1=1,23,.). (32)
g G

gt Os?
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The derivatives in these equations are to be taken at (& — £g).
Let us see (31) first. Equation (15) shows that

flp) = 2i(pi AYtanxy + 22(; 7). (33}
Laoking at Fig. 1, relations between z,y and u,v can easily be derived in the form
(@A) = u(w)cos A~ v{@)sin A, y(p;A) = w{p)sin A+ v(w)cos A.

The differentiation of these quantities with respect to A and polar angle v yields

aa':g;j\; N _ i), Bﬁg\; A _ 33 \). (34)

Application of (33) and (34) gives

AACLY DR Ml (Y.
A4 - Hr4i+2

=f(99;A) (i20,1,2,...),

P (@A) _ 8 f(gr))
GAAT+I T T T padian
Since function f is independent of the blade spacing ¢, it holds true for arbitrary positive
integer ¢ that

= 22{p; A)tan x; — 25{p;id) (i= 0,3,2,..). (35)

Ff .
ETie 0 (i=1,2,3,.) (36}
Bearing in mind (25), (33) and (34), it can easily be seen that (31) holds true for arbitrary
value of 2.
Let us investigate condition (32) now. The order of integration and derivation can be changed
in the equation since the variables are independent of each other. Hence,

Ir

. 2x X
A o glese), . .
0/{351' Lfﬂ(%%ﬂdw} } 5e7 dp'=0 (i,7+1=1,2,3,..). (37)

The derivatives here are to be taken at (¢ —¢;). Bearing in mind (18), it can easily be seen that
the value of the integral in the bracket is equal to {—x), so its arbitrary orders of derivatives
(1 = 1,2,..) vanish. Hence, Eqs. (37) and (32) hold true for ali the possible cases. Since
orthogonality conditions expressed by Eqs. (30) are fulfilled, every equation of (20) has an
infinite number of different solutions. The real solution can be chosen by applying the Kutta
condition.

in the knowledge of the solutions of Egs. (29) belonging to £ = ¢

Aq(wie)  q¢lese Pqle;e
Q((P;Eﬂ)u q(f;i' )) %(:Z }} Q(:g )1

the transformed contour velocity belonging to parameter £ (A or ¢) can be obtained:

q(pie) = Za—iegg*g—)(g—_jol (38)

=0

The derivatives in (38) are to be taken at £ = ¢g.
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