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1. INTRODUCTION

In the engineering practice stability problems of plates loaded in their own plane are espe-
cially interesting ones. To the author’s knowledge paper [1, 1981] by Brian was the first one
which dealt with the stability problem of a circular plate. Since then a number of papers have
been devoted to this issue. Here we have cited only a few [2, 1933], [3, 1984] and remark that
further references can be found in the papers cited.

A circular plate can be stiffened in various ways. For example we can apply a corrugation
to it, or it can be stiffened by a cylindrical shell attached to the plate on its boundary. The
present paper investigates the stability of a circular plate provided that the plate is stiffened by a
cylindrical shell. This problem was partly solved by Szilassy [4, 1971], [5, 1976] who set up
a differential equation for the rotation field and solved the corresponding eigenvalue problem
under the assumption that the shell is subjected to a constant radial load in the middle plane of
the plate.

First we shall consider the governing equations of the stability problem if there is no stiff-
ening. Then we shall clarify what conditions are to be satisfied on the circle where the middle
surfaces of the plate and shell meet. By solving the differential equations set up both for the
shell and for the plate in terms of the displacements we derive a non-linear equation from the
eigenvalue problem to be solved. We shall also present the results of our computations.

2. THE STRUCTURE AND THE LOADS APPLIED

Figure 1 shows the geometry of a structure consisting of a circular plate and cylindric shell.
We shall assume that there is no hole in the plate, i.e., Ri = 0. We shall also assume that
the plate and the shell are thin, consequently we can apply the Kirchhoff theory of plates and
shells. If the shell and plate are made of the same isotropic material, then E and ν are the
Young-module and the Poisson ratio, respectively. We consider two loads: 1. a constant radial
load in the middle plane of the plate (see Fig. 1); 2. a constant uniform load exerted on the
external lateral surface of the shell. The loads are rigid, i.e. they keep their original direction.
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FIGURE 1.
Supposing small and elastic axisymmetric deformations, we determine the critical load of the

structure. The results obtained shall clarify what effect the stiffening has on the critical load.



3. CONDITIONS BETWEEN THE TWO STRUCTURAL ELEMENTS

When we examine the conditions to be satisfied on the intersection line of the middle surfaces
of the shell and the plate we shall assume that this line is a circle with radius R = Re where
Re is the external radius of the plate and at the same time we regard this radius as if it were that
of the middle surface of the shell. We shall also assume that due to the load the shell and plate
deform together on this line that is the displacement and the rotation are the same both for the
plate and for the shell at R = Re.

fo fof f

2Re

Mo Mo

v

z ξ R

p

FIGURE 2.
f

Mo

f

MoMRb

fbfb

MRb

2Ri

2Re

u

w

FIGURE 3.
Separated from each other mentally the two structural elements (the plate and the shell) are

shown in Figures 2 and 3, where we can also see the load for loading case 1 and the inner force
system. We can calculate the intensity of the distributed forces f and that of the distributed
couple system Mo from the conditions mentioned above, that is from the fact that (a) the radial
displacement u of the plate is equal to the radial displacement v of the shell, the latter is per-
pendicular to its middle surface; (b) the rotations are also the same. Consequently the following
conditions are to be satisfied

u
∣∣
R=Re

= uo = vo = v
∣∣
ξ=0

(1a)

and

ϑo = −dw
dR

∣∣∣∣
R=Re

=
dv
dξ

∣∣∣∣
ξ=0

. (1b)

It is also obvious that the shear force QR in the plate is zero on the intersection line of the two
middle surfaces:

QR

∣∣
R=Re

= 0 . (1c)

4. DEFORMATION OF THE CYLINDRIC SHELL

If the shell is subjected to a constant radial load p directed towards the axis of the shell [6,
1967] and the deformation of the middle surface is axisymmetric, the radial displacement v on
the middle surface – see Figure 2 – should satisfy the differential equation

d4v

dξ4
+ 4β4v =

1

I1hE1h

(
−p− ν Nξ

RK

)
(2a)



where

β = νo

√
Re
δ

1

Re
, νo = 4

√
3(1− ν2) , I1h = δ3/12 , E1 = E1h = E/(1− ν2)

(2b)
and under the present conditions Nξ = 0. The solution of equation (2a) assumes the form

v(ξ) =
4∑
i=1

aiVi(βξ) + vp ; vp = −p/β4I1E1 (3)

where Vi (i = 1, . . . , 4) are Krylov-functions and ai (i = 1, . . . , 4) are integration constants.
For a cylindric shell Qξ is the shear force and Mξ is the bending moment.

The solution for v is the superposition of the solutions we shall determine for the following
two partial loads:

Load 1.: The shell is subjected to the distributed forces fo and f . The corresponding
boundary conditions are as follows:

Qξ|ξ=0 = −fo − f
2

,
dv
dξ

∣∣∣∣
ξ=0

= 0 , Qξ|ξ=h = 0 , Mξ|ξ=h = 0 . (4a)

Load 2.: The shell is subjected to the couple system M◦. Now we have the following
boundary conditions:

v(ξ)|ξ=0 = 0 , Mξ|ξ=0 = −Mo

2
, Qξ|ξ=h = 0 , Mξ|ξ=h = 0 . (4b)

Observe that the boundary conditions at ξ = h are the same for the two partial loads.
When calculating the partial solutions we utilize that the sear forces Qξ and the bending

moment Mξ can be determined from the relations

Qξ = I1hE1h
d3v
dξ3

and Mξ = −I1hE1h
d2v
dξ2

. (5)

After some hand made calculations in which we have made use of the definitions of the Krylov-
functions we obtain

vo = v|ξ=0 = − νo
2E

(
Rk
δ

) 3
2 cos 2hβ + cosh 2hβ + 2

sin 2hβ + sinh 2hβ︸ ︷︷ ︸
α

(fo − f) = −α (fo − f) (6)

and

ϑo =
dv

dξ

∣∣∣∣
ξ=0

= −ν
3
o

E

(
Rk
δ

) 1
2 cos 2hβ + cosh 2hβ + 2

sinh 2hβ − sin 2hβ

1

δ2︸ ︷︷ ︸
κ

Mo = −κMo . (7)

where α and κ are defined by the relations above. The radial displacement for the constant
radial load p is naturally a bit different:

v(ξ = 0) =
νo
2E

(
RK
δ

) 3
2 cos 2βh+ cosh 2βh+ 2

sin 2βh+ sinh 2βh
f − 1

E

R2
K

δ︸ ︷︷ ︸
ϕ

p = αf − ϕp (8)



5. DEFORMATION OF THE CIRCULAR PLATE

In an axissymmetric case every physical quantity depend only on the radiusR. Consequently
the differential equation for the displacement w takes the form:

∆H∆Hw −
1

I1E1

[
NR

d2w

dR2
+Nϕ

1

R

dw
dR

]
=

1

I1E1
pz (9a)

where pz = 0 (there is no load on the plate in the direction z) and

∆H =
d2

dR2
+

1

R

d
dR

=
1

R

d
dR

(
R

d
dR

)
. (9b)

The inner forces NR and Nϕ in the circular plate due to the in-plane load are

NR = −A+
B

R2
and Nϕ = −A− B

R2
. (10)

where A and B are integration constants. If there is no hole in the plate then

A = f and B = 0 . (11)

The radial displacement due to the load f exerted on the outer diameter can be calculated from
the following equation

vo = −KRk
2b

f

E
where K = 1− ν . (12)

If we introduce the dimensionless independent variable ρ = R/Re from equation (9a) we
obtain

∆̃∆̃w + F∆̃w = 0 (13a)
in which

F = R2
K

f

I1E1
and ∆H =

1

R2
k

(
d2

dρ2
+

1

ρ

d
dρ

)
=

1

R2
k

∆̃ (13b)

Solution for the above equation is of the form

w(ρ) = c1Z1 + c2Z2 + c3Z3 + c4Z4 , (14a)

Z1 = 1 , Z2 = ln ρ , Z3 = Jo(
√
Fρ) , Z4 = Yo(

√
Fρ) , (14b)

where ci, (i = 1, . . . , 4) are integration constants while Zi are the independent particular
solutions. For small values of

√
Fρ it holds the following asymptotic relation

Yo(
√
Fρ) = 2 ln(

√
Fρ)/π . (15)

The displacement w should be limited if ρ→ 0. If we take into account equation (15) and the
relation Z3(0) = Jo(0) = 1 we obtain that w is limited if

c2 = −2c4/π . (16)

Consequently

w(ρ) = c1 + c4

[
Yo(
√

Fρ)− 2

π
ln(
√

Fρ)

]
+ c3Jo(

√
Fρ) . (17)

In what follows use will be made of the relations

2J1(x)/x = J2(x) + Jo(x) 2Y1(x)/x = Y2(x) + Yo(x) (18)

and
(∆̃ + F)(c3Jo(

√
Fρ) + c4Yo(

√
Fρ)) = 0 , (19)



together with the equation

QR = I1E1
d

dR
∆Hw +NR

dw
dR

, (20)

which provides us the shear force – here I1 = 8b3/12. It is not too difficult to check that

QR
R3
K

I1E1
=

d
dρ

[
d2

dρ2
+

1

ρ

d
dρ

+ F

] [
c1 − c4

2

π
ln(
√

Fρ)

]
= −c4

2

π
F

1

ρ
. (21)

Since the shear force QR is zero on the circle with radius R = ρRK if R→ 0 (or which is the
same if ρ→ 0) we obtain from the above equation that

2πRQR = −4c4f = 0 7→ c4 = 0 . (22)
Therefore the solution for w is of the form

w(ρ) = c1 + c3Jo(
√

Fρ) . (23)
The integration constants left can be calculated from the conditions to be satisfied on the inter-
section line of the two middle surfaces for which ρe = 1. After some manipulations the left
side of condition (7) takes the form

ϑo = − dw
dR

∣∣∣∣
R=Re

= − 1

Re

dw
dρ

∣∣∣∣
ρ=1

= − c3
1

Re

dJo(
√
Fρ)

dρ

∣∣∣∣
ρ=1

= c3
1

Re

√
FJ1(

√
F) .

(24a)
At the same time the right side can be manipulated into the form

Mo = −I1E1

[
d2w

dR2
+ ν

1

R

dw

dR

]∣∣∣∣
R=Re

= −c3
I1E1

R2
e

{
F

2

[
J2(
√

Fρ)− Jo(
√

Fρ)
]
−

− ν

ρ

√
FJ1(

√
Fρ)

}∣∣∣∣
ρ=1

= −c3
I1E1

R2
e

[
(1− ν)

√
FJ1(

√
F)− FJo(

√
F)
]

(24b)

where we have utilized the derivatives of Jo as well as relation (18). If we equate equations
(24a) and (24b) we have√

FJ1(
√
F)− κI1E1

R2
e

[
(1− ν)

√
FJ1(

√
F)− FJo(

√
F)
]

= 0 . (25a)

Upon substitution of κ from (6) we obtain the nonlinear equation√
FJ1(

√
F)− 1

4

b̃3

δ3
1

νo

√
δ

Re

cos 2hβ + cosh 2hβ + 2

sinh 2hβ − sin 2hβ

[
(1− ν)

√
FJ1(

√
F)− FJo(

√
F)
]
= 0 (25b)

which provides the critical F. After solving this equation we can calculate the critical fo or
fcrit for the first loading case by using equations (12) and (6):

(1− ν)
Re
2b

f

E
= α(fo − f) 7→ fo = f

(
1 +

1− ν
α

Re
2b

1

E

)
. (26)

For the radial load p a similar line of thought provides the critical value:

p = f

(
α +K

Rk
2bE

)
δE/R2

e (27)

A program has been written in the Fortran 90 language to solve the non-linear equation, more-
over to calculate fcrit. We have assumed that (a) δ = 2b; (b) the material of the shell and the
plate is the same steel: E = 2.1×105 N/mm2, ν = 0.3; (c) if there is no shell the critical load
is denoted by fcrit(h = 2b). Under these conditions the quotient fcrit/fcrit(h = 2b) depends
on the quotients 2b/Re = δ/Re and h/Re – the latter is measured on the horizontal axis:
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If the shell is subjected to the distributed load p we denote the intensity of the equivalent force
system acting on the circle with radius Re by pred. The diagram below shows the quotient

pred
pred(h=2b) against h/Re.
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6. SUMMARY

The paper presents the governing equations for the two parts of the structure including the
boundary conditions for each part under the condition that the whole structure is divided into
two parts. After clarifying the deformations both in the plate and in the shell we derive the
non-linear equations that provide us the critical load for both loadings. A program has been
developed and the computational results are presented in graphical formats. The results obtained
prove that the height of the plate does not change the critical load if the height is larger than a
certain value.
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