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This paper presents a finite difference solution of the 2-D, unsteady incompressible 

Navier-Stokes equations for laminar flow about a rotating cylinder placed in an otherwise 
uniform flow. The governing equations are written a non-inertial system fixed to the rotating 
cylinder. The orthogonal transformation provides a fine grid near the wall and a coarse field 
far from the cylinder. Time derivatives are handled by forward differences, convective terms 
by a third order upwind difference, other space derivatives are by high order central 
differences. The variation of lift and drag coefficients with time are presented for different 
values of rotation parameter α . The variation of time mean and root-mean-square (r.m.s.) 
values with α  are also shown for two meshes. 
 

1  Introduction 
It has been known for a long time that a spinning cylinder will develop large lift 

forces when placed in a uniform stream; this is the so called Magnus effect. The first person 

who used this device on a large scale for ship propulsion was Flettner, and the device was 

named after him. Rotating cylinder is also a means of boundary layer or circulation control. 

By moving part of the wall it is possible to eliminate the formation of the boundary layer by 

attempting to eliminate the velocity difference between the wall and flow, which is the very 

source of boundary layer formation. Using a rotating cylinder at the leading edge (see Lewis 

& Arain (1991)) or at the trailing edge (see Tennant et al. (1976)) of an aerofoil, flow 

separation can be prevented resulting in high lift and low drag. Hyung et al. (1995) carried 

out experimental tests on the flow past a rotating cylinder in uniform shear flow. Chew et al. 

(1995) and Cheng et al. (1997) developed a hybrid vortex scheme in which the vorticity 

transport equation is broken into two fractional steps: pure diffusion and inviscid convection 

are handled separately. They applied their methods for computation of flows around fixed and 

rotating cylinders. 

There are different methods available for the computation of flows past fixed or 

oscillating cylinder, Karniadakis & Triantafyllou (1989), Menighini & Bearman (1995), 

Baranyi & Shirakashi (1999a) and Baranyi et al. (1999b). In the latter papers the authors 



  

present a computational method, based on a finite difference solution of the Navier-Stokes 

equations and a pressure Poisson equation written in a non-inertial system fixed to the 

oscillating cylinder. This method is extended here for the computation of the flow past a 

rotating cylinder placed into a uniform stream. Computational results are presented for lift 

and drag coefficients. Based on computational results the author attempts to evaluate the 

efficiency of the Magnus effect in creating lift. 

 

2  Governing Equations 
 

The primitive variable formulation is used for the solution of the problem. The 

governing equations are: two components of the non-conservation form of the Navier-Stokes 

equations and the equation of continuity. These equations which contain only dimensionless 

quantities are written in the non-inertial system fixed to the rotating cylinder, referred to as 

relative system from now on. The equations have the following forms 
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In these equations all quantities are non-dimensionalized by the combinations of a 

reference length L=d, a reference velocity U, the density ρ  and kinematic viscosity υ . Here 

d is the diameter of the cylinder and U is the upstream velocity. Consequently the Reynolds 

number Re is defined as ν/UdRe = . In the equations above x, y are Cartesian co-ordinates, 

u, v are the x, y components of velocity in the relative system fixed to the cylinder, p is the 

pressure, Θ  is dilation, t is time, α  is the cylinder rotation parameter defined as the ratio of 

the peripheral velocity and freestream velocity 

2U
d Ωα = .      (4) 

Here Ω  is the angular velocity of the cylinder. It is positive when the direction of rotation is 

counter clockwise. 



  

Although theoretically equations (1) – (3) are applicable for the determination of the 

three unknowns u, v and p, according to Harlow & Welch (1965) it is advisable to use a 

separate equation for the determination of pressure p. Taking the divergence of the Navier-

Stokes equations (1) and (2) yields a Poisson equation for pressure 
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is the vorticity. Governing equations (1) – (3) and (5) are valid for flows around cylinders 

rotating with variable angular velocity ( ( )tαα = ), with constant angular velocity ( )const=α , 

and also for stationary cylinder ( 0=α ). Although strictly the dilation 0=Θ  by continuity, 

still it is advisable to retain its partial derivative with respect to time in equation (5) to avoid 

instability, Harlow & Welch (1965). Equations (1), (2) and (5) will be solved while the 

continuity equation (3) is satisfied at every time step. The body force due to gravity is 

included in the pressure term. 

 

2.1 Boundary and initial conditions 
 

The basic equations are written for the incompressible fluid in a non-inertial system 

fixed to the rotating cylinder. The physical domain defined by dimensionless inner and outer 

radii 1R  and 2R , is shown on the left-hand side (LHS) of Figure 1. In the relative system it 

looks as if the parallel flow were rotating with non-dimensional angular velocity Ω− . At 

dimensionless time t the freestream velocity U includes an angle of  

t Ωϑ =       (7) 

with the x axis (see the figure). Due to lack of space, the way quantities are 

nondimensionalized will not be explained here, we only refer to Baranyi & Shirakashi 

(1999a). The relationship between rotational parameter α  defined by equation (4) and 

dimensionless Ω  is αΩ 2= . 

Before considering the boundary conditions (BCs) let us write the relationship in an 

arbitrary point of the physical domain between velocities u, v in the relative system and 

absolute velocities au , av  measured in the inertial system. Taking into account basic 

kinematics the relationship between these velocities runs as follows 



  

; sinR 2- sinv  cos uua ϕαϑϑ +=      (8) 

ϕαϑϑ cos R 2-u sin  cos vva −=      (9) 

where R is the dimensionless distance from the origin, ϑ  is the angle shown in Figure 1, 

related to cylinder rotation, ϕ  is polar angle measured in the relative system; it is zero in the 

direction of the positive x axis and is increasing in clockwise direction. Let us investigate now 

the boundary conditions. 

On the surface of the cylinder ( 1R )  (See Figure 1): 

Velocity: no-slip condition 

u =v = 0 .      (10) 

Pressure: 
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where n refers to components in the direction of the outer normal. Equation (8) is obtained 

from Navier-Stokes equations (1) and (2). 

Far from the cylinder ( 2R ): 

Velocity: uniform absolute flow 

( ) ;sinR 2t 2cosu 2 ϕαα −=     (12) 

( ) . cosR 2t 2sinv 2 ϕαα −−=       (13) 

These time-dependent BCs were obtained from equations (8) and (9) assuming uniform flow 

at 2R  in the inertial system, and equation (7) was also taken into account. 

Pressure: 

. 0
n 
p 
≅
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∂       (14) 

It is to be noted that the assumption of uniform flow in the far field region is reasonable 

except for the narrow wake since the outer boundary of the computational domain is very far 

from the cylinder. 

Initial conditions are obtained from the assumption that the cylinder is started 

abruptly at t = 0. Substituting 0=ϑ , u = U = 1 and v = 0 into equations (8) and (9) yields 

initial conditions for velocity 

; sinR 21u ϕα−=      (15) 

ϕα cos R 2v −= ,     (16) 

and pressure p is considered to be constant at t = 0. 



  

 

 
Figure 1  Physical and computational planes 

 

3  Transformation from Physical Plane to Computational Plane 
 

We use boundary-fitted co-ordinates on the physical plane since boundary conditions 

can only be represented accurately when the boundary is such that it coincides with some 

coordinate line. This physical domain shown on the LHS of Figure 1 is transformed onto a 

rectangular domain - computational plane - which can be seen in the right-hand side (RHS) of 

the figure. A unique and single-valued relationship between the co-ordinates on the 

computational domain ( )τηξ  , ,  and the physical co-ordinates ( )t ,y ,x  can be written as (see 

Baranyi et al. (1999b)) 

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
τ

ξηηξ
ξηηξ

=
−=

=

t
;  g sin  R,y

;  g cos  R,x
     (17) 

where the dimensionless radius 

( ) ( )[ ] .  f exp R R 1 ηη =             (18) 

This choice of the structure of the mapping function automatically assures that the 

obtained grid is orthogonal on the physical plane for arbitrary functions ( )ηf  and ( )ξg . 

By choosing the mapping functions properly a very fine grid can be obtained in the 

vicinity of the cylinder and a coarse grid far from the body. Even linear functions for ( )ηf  



  

and ( )ξg  can provide this feature. Transformations (17) and (18) are unique and single-

valued only for non-vanishing Jacobian J 
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The x and y components of the Navier-Stokes equations will be transformed as 

follows 
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The dilation Θ  transforms as 
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The Poisson equation for pressure will have the form 
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Boundary conditions for pressure will be transformed as 
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In equations (20) - (24) variables ϕ, g  ,g 2211  and σ  are defined as follows 
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In these equations 11g  and 22g  are elements of the metric tensor. Because of the 

structure of transformation (17) and (18) the grid is always orthogonal. Hence the off-

diagonal metric tensor elements 0gg 2112 == . That is also the reason why the mixed second 

derivatives are missing from the equations above. 

Since the mapping is given by elementary functions, all of the metric parameters and 

co-ordinate derivatives can be computed from closed forms. In this way the numerical 

differentiation of co-ordinates subjected to numerical errors can be avoided. 

It can be shown by using equations (17) - (19) and (28) that when ( )ξg  is a linear 

function then 0=ϕ . If f is a linear function of η  then 0=σ  too, as can be proved by using 

equations (17) - (19) and (29). In these cases our equations can be simplified further, and the 

grid aspect ratio will become constant. By choosing the number of grid points in directions ξ  

η  properly, this constant can be set to unity resulting in conformal transformation. 

 

4  Discussions and Sample Calculations 
 

The computational code developed for the solution of the flow about fixed and 

oscillating cylinders (see Baranyi & Shirakashi (1999a)) was modified and extended in order 

that it should be able to tackle this new problem. The transformed governing equations are 

solved by the finite difference method. The time derivatives in the Navier-Stokes equations 

(20) and (21) are approximated by forward differences. Fourth order central difference 

scheme is used for the diffusion terms and pressure derivatives. The widely used modified 

third order upwind scheme proposed by Kawamura (1984) proved to be successful in 

handling the convective terms in the Navier-Stokes equations. 

The equations of motion are integrated explicitly giving the velocity distribution at 

every time step. In the knowledge of the velocity distribution in an arbitrary time step, the 

pressure is calculated from equation (22) by using the successive over-relaxation method 

(SOR) while the continuity constraint (22) is also satisfied. The pressure on the cylinder 



  

surface is calculated by the third order formula derived from the Taylor series at every time 

step. 

The computational grids used are 145x79 or 241x131 O-meshes. These numbers of 

grid points were chosen to assure conformal property of the transformation. The diameter of 

the outer boundary of the computational domain is 30 d.  Dimensionless time steps used were 

0.001 and 0.0005.  

Computations were carried out for flows about cylinders rotating with different 

angular velocities and with Re = 180. The effect of rotation parameter α  on the lift and drag 

coefficients was investigated for 5.1 0 ≤≤α  for meshes characterized by 141x79 and 

241x131 grid points. Figure 2 shows the variation of lift coefficient LC , skin friction lift 

coefficient f LC , drag coefficients DC  and f DC  with dimensionless time, for 

1.5,  1;  ;5.0  ;0=α  and for 241x13 mesh. Having a glance at these figures we can see that 

only small parts of the lift and drag coefficient are due to friction; larger parts are due to 

pressure. The top part of the figure shows coefficients for fixed cylinder ( 0=α ). In this case 

the drag coefficients oscillate twice as many as the lift coefficients during a fixed time 

interval. In case of 5.0=α  a second dominant frequency component appears in the drag 

coefficient. By increasing α  further all of the signals show regular fluctuations with constant 

amplitudes, and the frequency of oscillation for lift and drag will become roughly identical in 

contrast with fixed cylinder. By applying FFT for the oscillating signals it was found that the 

change in the vortex shedding frequency, or Strouhal number can be neglected over the 

investigated α  domain. 

Computations were carried out for the 145x79 mesh for different α  values too. On 

the other hand time mean values and root-mean-square (r.m.s.) values were evaluated for both 

meshes. Figure 3 shows the mean values for lift and drag coefficients against α  for the two 

meshes and a remarkably good agreement was obtained. It was found that the drag coefficient 

is slightly decreasing in contrast with the results of Chew et al. (1995) who experienced a 

slight increase in DC  for increasing α . It can be seen in the figure that the absolute value of 

the lift coefficient increases almost linearly with α . It is known or can be derived easily that 

for frictionless ideal fluid-flow around a rotating cylinder the lift coefficient id LC  is also a 

linear function of α , and can be written as follows 

απ   2C id L −= .       

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  The variation of lift and drag coefficients with α  and time 

 

By comparing this relationship with the results in Figure 3 one can say that at this Re 

number and in the investigated α  domain the real lift is just about 40 % of the one predicted 

by the Magnus effect for ideal fluid. 

Figure 4 shows the variation of the r.m.s. values of lift and drag coefficients with α  

for the two meshes mentioned earlier. Having a glance at the figure one can see that while the 

r.m.s. values of the drag coefficient agree very well over a wide range of α  domain, the r.m.s. 

values for the lift coefficients for the two meshes differ from each other over the whole α  

range. The accurate prediction of r.m.s. LC  requires the application of a dense mesh. It looks 

like that the accurate prediction of the r.m.s. values of the lift coefficient means a severe test 

of  the computational method  not only  in the case of the fixed or oscillating  but for  rotating 



  

 
Figure 3  Time-mean values of lift and drag coefficients vs rotational parameter α  

 
cylinders as well. For the computations carried out the angular velocity of rotation was 

constant so far. We are going to investigate the case when ( )tαα =  in future. 

 
Figure 4  Root-mean-square values of lift and drag coefficients vs rotational parameter α  

 



  

5  Concluding Remarks 
 

The finite difference method worked out mainly by the present author has been 

extended and adapted for the numerical simulation of unsteady, laminar incompressible fluid 

flow about rotating circular cylinders placed in otherwise uniform flows. Primitive variable 

formulation is used, and equations are derived in a non-inertial system fixed to the cylinder. 

By using boundary fitted co-ordinates, interpolation of the boundary conditions becomes 

unnecessary. The choice of a grid fixed to the moving cylinder eliminates the need for 

interpolation of the initial values at every time step. An orthogonal transformation is used to 

map the physical plane to the computational one, and the grid density can be controlled. Time 

derivatives are approximated by forward differences, space derivatives by fourth order central 

differences except for the convective terms for which a third order modified scheme was used 

Kawamura (1984). Velocity values are obtained by integrating the Navier-Stokes equations 

explicitly, and SOR method is used for the determination of the pressure distribution at every 

time step. The vortex shedding frequency is obtained by applying the FFT for the computed 

oscillating signals. 

Computations have been carried out for different angular velocity or rotation 

parameter ( )α  values for two different meshes. Time mean values for lift and drag 

coefficients agree well with each other for the two meshes but the root-mean-square value of 

the lift coefficient requires the denser mesh. It seems that the accurate prediction of this 

quantity is a severe test of the method for not only fixed and oscillating cylinders but for 

rotating ones too.  

 
References 
 

BARANYI, L. & SHIRAKASHI, M.  1999a  Numerical solution for laminar unsteady flow about 

fixed and oscillating cylinders.  Journal of Computer Assisted Mechanics and Engineering 

Sciences, Warsaw, Poland, (accepted for publication), 1-15. 

BARANYI, L., SHIRAKASHI, M., & KÓSA, GY.  1999b  Computation of two-dimensional 

laminar unsteady flow past fixed and oscillating cylinders. Proceedings of the 11th 

Conference on Fluid and Heat Machinery and Equipment, Budapest, 1999, (accepted for 

publication). 



  

CHEW, Y.T., CHENG, M., & LUO, S.C.  1995  A numerical study of flow past a rotating 

cylinder using a hybrid vortex scheme. Journal of Fluid Mechanics, 299, 35-71. 

CHENG, M., CHEW, Y.T., & LUO, S.C.  1997  A hybrid vortex method for flows over a bluff 

body. Int. Journal for Numerical Methods in Fluids, 24, 253-274. 

HARLOW, F.H., & WELCH, J.E.  1965  Numerical Calculation of Time-Dependent Viscous 

Incompressible Flow of Fluid with Free Surface. Physics of Fluids, 8, 2182-2189. 

HYUNG, J.S., CHONG, K.C., & JAE, M.H.  1995  Experimental Study of Uniform Shear Flow 

Past a Rotating Cylinder. Journal of Fluids Engineering, 117, 62-67. 

KARNIADAKIS, G.E.,  & TRIANTAFYLLOU, G.S.  1989  Frequency Selection and Asymptotic 

States in Laminar Wakes, Journal of Fluid Mechanics, 199, 441-469. 

KAWAMURA, T.  1984  Computation of High Reynolds Number Flow around a Circular 

Cylinder with Surface Roughness, Proceedings of the 22nd Aerospace Sciences Meeting, 

Reno, Nevada, AIAA-84-0340, 1-11. 

LEWIS, R.I, & ARAIN, A.A.  1991  Vortex Dynamics Modelling of a Rotating Cylinder for 

Aerofoil Lift Control. Proceedings of the 9th Conference on Fluid Machinery, Academic 

Press, Budapest, 256-265. 

MENEGHINI, J.R., & BEARMAN, P.W.  1995  Numerical Simulation of High Amplitude 

Oscillatory Flow About a Circular Cylinder. Journal of Fluids and Structures, 435-455. 

TENNANT, J.S., JOHNSON, W.S., & KROTHAPALLI, A.  1976  Rotating Cylinder for 

Circulation Control on an Airfoil. Journal of Hydronautics, 10, 102-105.  


