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GEAR CALCULATION
BY USING COMPLEX EXPRESSIONS

L. HUSZETHY*

[Manuseript received September L0, 1970]

In this paper. some geomelrie and mechanics ;rmlit rlics of pairs of spur gears, char-
zod by straight teeth and parallel axes, are trested. The main peints are: definition
§ the mtmg rofile of a given one; unuhr-u:. of the line of action: analveis of the geometric
mnti:.aum£ enmviitions of mating: m-,ﬂd:gatmn of the gear ratio modification motivated
zome devintion of the mteraxis: caleolation of the relative tnnth-aiiding welocity: ealenla-
the momentaneous normal tooth-foree. One of the mating prnfl]aa, usnally the pinion
1= considered as given: by this datum, the line of action is determined and so is the
mating profile. A remarkable feature of the calenlution method as deseribed below,
the nsage of complex expressions, is the derivation of the results from given functions

el the profile of the pinion is determinesd.

Introduction

ﬁnco the literary source [2] includes both the description of the pinion
oo a complex plane, and the derivation of the equation by which the
of action is determined, and contains also the formation of the mating
e in detail. here Lhis will be summarized only briefly as follows (NB: as
= the definition of the mating profile, the method applied in the quoted
source somewhat deviates from the one proposed in the present

s

what follows, in considering o pair of straight spur gears having
e,

the centre distance a,
and the gear ratio

gre siven values, and i i constant. In other words, the assumption is taken

i granted according to which the division ratio of the centre distance as
d by the common normal of the mating profiles at the pitch point is a
ant value.

1. Based on a given profile, determination of the mating profile

In Fig. 1, the system of planar co-ordinates is shown that seryes as
basic principle of our caleulation. The point 0, heing the origin of the
coincides with the rotution centre of the pinion. Axis v passes through
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HUSETINY

B and O, of the pinion and of the gear, respeetively: axis x
axis v. In the following, subscript 1 refers to the pinion

B Eear.
o the accepted convention, the real quantities are represtnted
axis v represents the imaginary ones. On axis y. the unity
j" = —1}.
g¢ of the profiles in question is described by means of complex
1 number is composed as usual of a real and of an imaginary
‘wf which are represented by a real function. By eenformly chosen
ters, the geometric pictures of the profiles of both the pinion and the
characterized by the origin O, and (), respectively, and by an end-
8 delineates the respective profile curve.
Wector quantities which serve to describe the meh of the pinion
the gear. respectively, are denoted by Z, and Z,. Their component parts
: _- X, and Y,, Y,, written as capitals in order 1o avoid any confusion
Bk =mall letters, since z; and z, refer to the teeth numbers. xr represcnts
b+ sddendum modifieation factor and v represents the medification of the
eentre distance.
I Now, first we shall fix the tooth profile of the pimion at any arbitrary
time, t = 0. This profile, considered as being in the initial position can be
deseribed by the complex expression:

zur. = Im{’f |} + j}’ul.i.';t'l.] . “}

Further, ¢, represents a real parameter suitably chosen &= an angle, or a
distance, ete. The vector Z,, is characterized by its origin in 0, and its end-
point travelling along the profile curve when the parameter value ¢, varies
within & given range. Subscript , refers to the initial position.

For the sake of further consideration, the functions X _fg.). ¥, (¢,) and
their first and second derivatives are all assumed as being coatinuous.

When considering the profile as rotating in a positive sense at an angular
velocity . the complex funciion Zy; has to be multiplied by the quantity

Zyy = cos @y 1+ fsinog L

In terms of geometry, referring to some given point of the profile being
originally in the initial position, the veetor £, revolves in a positive sense,
through an angle o, . The rotating profile is expressed as follows:

Zalgs 8~ [Xoule)) + J Y alga)] [eos oy £ 4 j simoy (]

Zlmp 1) = [Xalp,) cos oyt — Youlp)) sin ey 8]
+ [ Xl sin oyt + Y (g)) cos e, 1]

Asin Techaiva Academime Seipntinewm  Hungaricas 73, 1072




CEAK CARCULATION 065

ring the function Z, and with the assumption that { is ¢on-
variable, then the endpoint of vector 7 y delineates the profile
| moment.  Aprain, taking ¢, as eonstant and ¢ as variahle, the
L of £, travels along the eurve that eorresponds to the path of the
oint determined by the chosen (initinl) parameter value, Taking the
file of pinion (1) as known, the profile of the gear (2) can be deter

remains in a fived position. The pinion’s rolling cirele rg; rolls
far's rolling cirele r,. By the family of curves represented as the

nrofil Hons during this relling motion an envelope is generated
the gear’s tooth profile.

%297
46 :f

Fig. I.

point of time ¢ — 0, in the initial position, the pinion’s teeth
racterized by equation (Fig. 2)-

Z 0= znllr?l}'

olling motion, whereas the radius 0,0, revolves around centre
&8 a0 angle v, ), finds its new position in OF, and P* is the new
i the initial P. In other terms, the arci - ry -y of the pinion per-

Areta Trohnied Aoaduwniee Seientinrmm Hhingaricne 73, 1972
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forms a rolling motion along the are rgy of the gear. Herefrom, the angle
of rotation of the pinion around its cenire amounis to:

p 4 iy = (1 + 8

Of course, there exists:a rigid connection between the tooth-profile and
the rolling cirele of the pinion. Accordingly, taking the veetor £y (drawn
from the origin 0, to a certain point P} and, when the pinion performed the
above-mentioned rolling motion, considering the vector Z¥ (drawn from the
new centre OF to the point P* in a new position), the angle included by these

vectors also amounts o (1 | i)y

~fa foos 't = Sin¥ )

1 ==
D&, &

Fig. 2.

In order to find 2 more “natural™ expression of the gear profile, we
chose by simple shifting, the centre O, as the new origin of our system of
co-ordinates, the direction of the axes being kept unchanged: Again, among
the family curves we ghall consider a curve eo-ordinated to a certain rolling
angle 4, when the pinion performs the rolling motion along the rolling cirele
of the gear. Now, the local vector Z, (drawn from 0.) of the point P* that
lies on the curve belonging to angle p, can be derived as follows:

We shall consider the veetor —ja that originates from 0, and points

Acta Teshnienr Armdereias Sofentivram  Hungarieee 3, MT2




GEAR CALCULATION 36T

il revolve through the angle y, i.e.it is multiplied by the
Cos g - J sina;

Ja (eosy + jsiny),

ition the new vector, originating from 0,, points to OF.

= veclor we add the other veclor Zhis this latter, originating
Pomtmg to P*, forms with vector Z, an angle (1 + ijy.

Loy = Zy; [eos (1 + i)y | jsin (L 4 Dyl

 veetor in square brackets represents the rotating unity vector.
iy we obtain:

ja(cosy + jsing) + 2, [eos (1 4 i)y + jsin (1 + ip] =
- —ja (eos p + Jsiny) + [Xgle) + 7Y (9] -
deos (1 + )y + jsin (1 + i)y,

¢ Arrangenent:

- .ui(‘h} cos (1 + B — ¥ (p,) sin (1 + i)y | asiny]

b 3
g Xoilrg) sin (1 + f)p + ¥ ,(0,) cos (1 + &)y — a cos . )

wte the real part (of vector Z,) as X . and the imaginary part
© from the profile point belonging to the parameter value
nt having the parsmeter value (5, + dy,), and the pinion
dip, we can ohserve that the total change of the vector Z,

4 axX, . .8Y gx. . av
B | i, |t [+ o v ®)

B¢, dyy 8y

e 1= obvious that this veetor should he parallel to the differential
# ViZ. 1o a tangent of the vector 7y — Z (9} which represents
ape: this change is expressed hy

BX, 3,
dZty, = [ B ]drp , (5)
S, g, ]

Adts Techuica Acodenize Scientiueem. Hungorioee 73, 1972




364 HUESETTY

of course, every single point of the envelope coincides with a peint lying on
one curve helonging to the family. Thus, for all these points:

Ly =,
g
X=X
[}
Yo=T¥. (6)

In view of the parallelity hetween the veectors dZ, an dZ,. the quolient of
them is a purely real quantity, viz. with an imaginary part equalling zero.

Thus, with the equalities of (6) we obtain:

18X, | .Y
=t by Py { % f—=1] dy
a‘ﬁ d"'F'i_ - gp 0 of —
[a;{x ) ] i i :
=t By i e "1
By iy
After division and simplifying arrangement we obtain:
a ay, BX ]
b 2| dyyedyp =0
8¢, By gy 3y
and in the form of a determinant:
8%, .|
| g ot
=] ‘ |_—u. (7)
oY, 8Y,
| B?ﬁ ali-" |

The partial derivatives of X, and Y, with respeet to g, and 1y will be
substituted in I} (7). Sinee in the present examination the actual relationship
between X, and ¢, (and between Y, and py respectively) are not defined,
the derivatives with respect to g, are indicated by an upper comma; further,
the denotation (1 - #) = k i¢ introduced, Thus we can write:

| X7, cos kep — Y. sin ko — X, ksinky— Y, k cos by 4+ acosy

= (};
X, sin ky + Y, cos ky X, kcos kyp — Yy ksin by - a sin g

that gives (with E—1 = i}

(i + 1) (X Xoy + Yo Yp) — @ (X, sin iy 4 ¥, cos i) = 0. (8)

Arty Teckniry  Aesdensiae Helenlierum Humgaricuy &, INT2




GEAR CALCOLATION it
Fameter ) will be expressed as & function of #,- By substituting
fue into the expression of Z_ equation of the gear profile is
tem of co-ordinates of axes parallel 10 the original axes and
agin in 0,. This t'.qutﬁn takes the form:

2y [ plyg)] = Z.(g4)-

| possible, that the actual expression is rather intricate: its main
e consists in the fact that the gear profile is deseribed us a functipn
i lutt, rbeing the parameter of the pinion-profile. In this way, 1o every
B8t of the gear profile, a special mating point of the pinion profile
muted. In some actual cases it i possible to modify the squation of
in such a way, by which 2 more suitable parameter can he

2. Equation of the line of action

W basis of this equation is given by the condition that the common
of the mating profiles always passes through the point € as indicated

Fig. 3.

parding to our consideration, point P is the new point of contact
d of time ¢ clapsed after the initial position. The Jocal vector
gefers to the actual mating point of the pinion’z tooth profile. The
® with respect Lo ¢, shall usually he indicated by an upper comma:
Bty Z denotes the tangent of the profile in point P, and jZ] denotes
e point the perpendicular to the profile. Thus, the local v

eotor 7

Aetw Teohnica Acodemian Solvatiirnr Hungarires 7F, 1878



370 HUSETHY

belonging to an arbitrary point lying on the normal of the profile at the
momentaneous point of contact is expressed as follows:

Zolwaz bz ) = Zily 3 t) + jAZ{{g,: 1)

e oo

with 4 as a real parameter. Point P is effectively a point of mating contaet,
it the above described normal to the profile passes through the mentioned
point. C. In other words, a triad of the parameter values (p,.14 2) should
exizl for which
Ra: . =0
(9)

Im Z“ = I'py -

By using Eq. (2) by which Z, is defined. the normal line of the profile is
deseribed by the equation:

£, = Xpeosw t— Y, sinm 1) — X, sin w, & Y5, cos o, 1] +

FilXsine ¢ + Y, cosmt) | AX] eos ot — Y sino, 0],
from which the detailed conditions implied by equations (9) can be written:

(Xgeose 1 — Y, sinw ) — X sinw t + Y, cosew, t) =0

*

(10)
(X sinew &+ ¥, eos o 0) + AXG, oosmy t — Yo sin o, t) = ry -

The above Eqs (10) describe the relationship between the parameter g, belong-
ing to a ecrtain point of the pinion profile and the point of time ¢ at which
the profile point referred to represents a point of active mating.

The first equation according to (10) gives us the EXpression

: Xy cosoogt - X sinmt e s
b f:t._:l_ :l: s I::j]“nnl S {1 £+ }tll Gl £y t == 0}1
X sin oy 14-X0{ cos o ¢

with this, the second eguation of (10) can be written as follows:

Xoycostt —X, sine @ _ .
L LU cos oy — X, sineyt)=r,.

Xorsine t+Y,, cosm b | = i =
Xopsinen t-HY ) cosw t

After elimination of the fractionel members and rearrangement

Xos Mg + Yoo XYoo — o (X sinag e - X5, cosm, t) =0,

Avta Toekiea Aeademine Seisstiorem  Hingerione T3, 1972




GEAR CALOULATION 371
I + 1) we obtain:

:.- xi:; b= Y_rl'l Y;;} S 4&&% § = 1"‘;1 oS ,:,-_',,s ;} ==
] = Vg &
—= ¥ 1= I).

ption Vig,:1) = 0 represents the interconnection between the param-
in arbitrary point on the profile and the point of time ¢ at which
it ceferred to forms the actual point of active mating.

__ the assumption 5178t = 0, by Eq- (11) we can obtain an explicit
:—" of the time 1 ag a f'u_nq.timd' t.b_t_—.pummf-.ter g4 When this function

1= 1g,) .

Stitated into Eq. (2) of the rotating profile (1), the following equation

of action is ohtained:

--’ = Zilg ()] = | X ax(g1) eos o, olg ) — Yol,) sin o, )] +

(12)
i X aleg) @ty + Y, (5;) cos o, )]

3. Conditions ﬂ' ‘mating

the Eq. (11) of the funection Flg s 1) = 0 the second member on the

md =ide can be transformed:

Bl 1Y), cosa it —

eI T dx-’ E”
= l R | YIE Dl._..... sin m-;l"i— = ."_:E' cosn 1|,
| VXG+ 3 i

‘B=ing the denotations:

%i,.m_- = eos d,
VXg+v¥a
e A,
FXG+ Y

Ay sin g 4 Y5 cos et = PXZE LY Zsin (w1 [-1)

X, X0+ Y, Y o) “Fx;i + Yasin (w 1+4+0) =0,

Aets Tesfirnbem  dendenine Selentioeum Hungarfom 73, 19723
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amil finally:
s l_lam cing AN, "1__‘_'“}_1_}.' Vo B ?_';” l. (
it a V"nn e Xor

(Xgp = 0)

Congidering the contact of a pair of mating teeth. two conditions should
fulfilled

a) every point of the profile must form a mating poinl onee,
only onee;

b) at any point of time, only one point of the profile must form
mating point.

Fig. 4.

A certain type of a line of action is shown in Fig. 4o that fulfills ¢
conditions (a) (h) given above. _

In the type of a line of action, as delineated in Fig. 4h, there are prof
points which, durmg the mating action, come twice into contact.

The case shown in Fig. 4c iz characterized by a simultaneous mati
contact of two points of a profile,

In order 1o avoid the above mentioned 1wo passibilities, it is postulate

that the funetton 1 — i) according to (13) must rigorously form a monofont
function during the mating period.

In Eq.(13) the sbsolute argumentum value of the funetion are si
must have, of course, 8 maximum equalling 1:

{1 |- {Yul Xoy+ .im 1|1

- == (14
i ;E— + Y

The geometric sense of this condition can be formulated as follows:
We establish the quotient with & vector Z,; as numerator drawn to an arbitrary

dete Torbmice  Asudeicing Scimticrum Hungeeione 73, 1972



CEAR CALCULATION 373

e profile, and with the tangest veetor Z, (at the same point) as

B Xot)Ye (K XEEW WO (X;, Y, X, Ys)
b XGHY Xziy:

Fig 5

, the sign of the angle formed by vector Z,, with vector 7, (Fig. 5)
 find as the real part of the quotient defined ahaove:

Z 1Zal - ol
Re Zo m['—ﬂ!' tmp+.imm] UL S
Z Z] Zal
Zy] cos ) — \Zi| Re 22 =

L]

= Xoi+ Y Eﬁﬁﬁi‘;‘ Xy Xy + Yo Yo

Xa+¥Ya X+ Yai

..- length of the image of vector £, projected onto the direetion of

wiew of

1 the form:

An Xa Eia¥el - (15)
xa+¥ad |

iz to the Eq. (15) we can state shat, considering a local vector co-
Wan arbitrary profile point, the length of its image projected onto the

diriz Terimirn Avsderine Sesentlirem  Hungariens 13, 1977
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direction of the tangent at the same point equals. at maximum, the radius of the
rolling cirele.

We shall find in Fig. 6 three different points of the pinion profile. Con-
sidering the point P,, we can see that the length of the image of its local
veetor Zy(P,) projected onto the direction of its tangent vector Zj,(P,)
exactly equals the radius ry, of the rolling cirele. This point P, may be a
mating point, namely, when eonsidering the pml’ﬁ{iurma.l al point P, we
- find that, by retation of the pinion, itz tangential point P* on the rolling
cirele falls so as to coineide with point €. 1

TolEgd

Fig. 6.

The profile normal at point P, intersects 4e circle in Two points
P; and P{. When, during rotation point P coime th point €, the profile
puint P, comes into the mating position (f, AF er period of rotation,
it is point P which coincides with the pitek g 2= the original profile |
point P, again comes into maling position: ok iz to the special
case as shown in Fig. 4b: onc special point
mating position, Usnally the mating period
time that there s, for such & profile point,
a second time, [
Again, profile point P, assumes o miats
Further, the normal to the profile at g
the rolling eircle and hence this point ness
For the function (13) the postalate &

s Lwice into @

] Sul‘.‘.h a short
p come to mating

onee.
tersection with

i mating position.

(16)

w4
Xiy ==

atherwise the expression

arctan
hecomes meaningless,

Aptm “Treknicn . Aeademinn Sisatiornm - Hiageriens T, IS



¢ expression
Zn=Xg¥F V¥

Be directional vector of the tangent at some (arbitrary) point of
ihe geometric sense of formuls (16) can be conecived as follows:
Bl there does not exist any special point for which the equality
t be true. Namely. in the opposite case. the profile function

¥ =fiX)

differentiated ar this point. and the respective tangent line
arallel to the Y axis. In terms of geometry, it is possible to find
that is parallel to the ¥ axis. In order to solve the problem of
gme, for which the equality

Xsileh) = 0

. then the second member of fanction (13) would reach the limit a2
mding to the trend

srmula (13) the incquality
X Xgy + Yor, =0

fates a condition sine qua non.
! ¥. when the equality

Norkgp+ Y Xe = D
M true, we had to set up
XXy =—Fg - Y5,

Yii . R 1

: = ; (18)
Xon Yo (Yo Xas)

e, ¥, /NG represents the slope of the tangent line at the mating

profile. and Y, /X, represents the slope of the local vector at

at. In other terms, the equality (18) should represent a position,

veetor of the mating point would be perpendicular to the

At Teohmion  Apadiming  Scisnfiaron  Naogereicae T3 1572




276 MUSETIIY

tangent line at the same point (Fig. 7). In such a case, no normal force action
can exist between the teeth (the limit case of friction).

To sum up: when the toothing of a pair of gears has to be designed,
we are, in principle, free to choose the profile curve of one of the pairs:
postulated is that the funetion (13) should be strongly monotonic, and that
the relationships specified in Eqs (15), (16) and (17) should hold true.

¥
C
I
I
i
i
I
Zm I
155
i ar
I
|
; =
] Ko x
Fig.

M course, a monotonic function (13) mvelves the relationship, that
with inercasing values of the pinion profile parameter g, the length of local

veetors: should also inerease.

4. Sensitive alteration of the gear ratio e any variation
of the centre distamee

When the basic principle concerning the nos
tained, then the gear ratio is constant during ﬁl
centre distance exactly equals the theoretic

Now, some deviation of the centre dis
technological errors or faulty assemblage, or el
large forces. When some alteration of this dists :
the common normal of the mating profiles does
point {C): what is more, the intersection point o
with the central line 0,0, may move away
of tecth: consequently. the gear ratio, first,
and secondly it varies during the mating -

the profile is main-
- action, il only the

W aocur. duoe either to
nations causcd by
s to exist, generally,
through the pitch
mormal to the profile
¢ mating of one pair
I the theoretic one,

Taking inte consideration the case wh
the pair of pears have correct profiles,
becomes altered, we are allowed to assume
distance is given, and to state that the

ical view-point.
centre distance
ne of the centre
¢ profile curves does

Actn Teehnien dewdemine Seinntizrum Hunguriese 79, 1952



CEAR CAYTCTLATION 3T

form with the basic theorem a5 regards the common normal. Thus,
iR : :

m can be put up by assuming a given centre distance and some
profiles that do not comply with the known principle underlying the
normal. These profile curves may be quite arhitra ry except for the
Btion of a continuous mating contact.

NS
B

.

Fig. 8.
Let us establish, according te :ﬁ.ﬂ, the fo]]awing viquations: first
Ly = IM +J"Yn‘.‘h:|

Epresents the local vector to the pﬁiflﬁninn (1) expressed in the system
co-ordinates x:¥; having the origia @,: secondiy

i = ‘X-H + 7Y oy

Epresents the local veetor 1o the m‘pﬂj in the system of co-ordinates
x ._}"2 having the origin W

e

Suppose that, in the initial position indicated by the index “0* the
teeth of the two wheels are just in contaet. and. of course, the value a of the

#entre distance is given.

When the pinion revelves.

n I':ﬂn sense, at the angular speed
ey =1

=0 docs the gear revolve in a OPEative semse. at an angular speed
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and with o, = 1 we have:

= = ayft)
¥

where, in general, i is a function of time.
In a peried of time ¢ the pinion revolves through the angle

e =S =y
and the revolving angle of the gear is; at the same time:
. rk
= lgoinde.

We zhall find the equation of the proliles n_'v(}h‘ing al the vorres
angular veloeity by multiplying the respective profile vector with 1
responding rotating unity vector. Thus, we can write the for pinion (1)

Z: ch E z.ﬁ s
where

Ly~ wost - f sint

iz the unily vector rolating in a positive sense at the aneular vel
(around the centre 0,):
and for the gear Bi= i "l

\'l'hﬂl'i‘

Zn=cosT — jsinT

is Lhe unity vector rotating throug ancle T in a ]'_I_ngﬂti‘l."i' sense (aro
centre (1,).

Thus, the revolving profiles are expressed as follows:

Zy = Lyl — Xy + 7Y ) (cost + jsing),

Zi=(Xypecost— Y, sint) 4 j(X,sint 4 Y, cost),
and
Ly —ZpZr — (X +JY ) (eos T—jsin T),
£y =(XpeosT | YusinT) + j{—XsinT 4 YoacosT).

postulate must be fulfilled that the two profiles always contact at a
point in which the respeetive tangent lines are in coincidence, In ths

Considering the range of mating action characterized by ; <t <

Avte Treehnien Acodamine Sciemtfzrumn Hungrrli.-u.- T, Hare




lowing equations can be written ae-
Z,=ja + 7,
% — plis & 2 = uz:.
ghols with an Upper comma represent the corresponding first derivative

Erespect to ¢, and g, respectively: @ denotes a factor of proportionality.)
 Seperating into component parts we obtain:

(21)

Ay COS E— Y, sint== X,' cos T L Y,.sin T,

Xy sing | Y, cost—a— Xepsin T + Y. cos T, (22)
Xy cos t — Y, cost = BRG eos T + Y, sin T),

Xy sin ¢ 4 Y5, cost == X0, sin T 1 Yy, cos T).

Hth equation of (22) will be divided by the 3rd:

Xiysint 4 Y7, cost _ AesnT YiseosT

Xoycost—Y), sing XecosT LY, sinT

Xy cost— ¥ sint =0
XiscosT = Yeun T = 0.

follows the operation of simultanesus division. namely, numerator and
minator at the left side will he divided by cos 1, and the same has to b
B by cos T at the right side, where cost = U, and cos T = ()

Xiptant+¥5 =Xt T4Y,,

Xi— Y. tang Xt ¥l tan T

Xy Xis tan ¢4 X7, Yo, tane - tan TL X7, Y}, ¥ Yiotan T =
= —X5 Xip tan T+ X7, Y5 4XE ¥4 tan ttan T — Y, Yo, tan s
taa Tltan 7 (X5, Y3, — XL XR)EXE X7 0 v Y] =

= Xp Xou — Xg, ¥, —tans (X6 Xo+ Y5, Y0,

re from:
tan T — (Xor ¥ou — X ¥iy) tane (X X +¥or ¥ou)
tan f( (a1 ¥ o2 os Y;IJ‘E"{ Xa 3:+Y:'|| b ¢

et Teehnica Acodemior Solentinrnm Hungaricar 73, J072




330
By uniting the system of equations (22) and the above formula for (tan T')
wie obtain:

Xpeost— Yysint = Xocos T+ Y,am T,

Xpsint 4 ¥Yyeost=a— XsinT 4 ¥oosT,

(X Yoo Xgo Vi) — (X3 Xjp+- ¥y Y tant
(Xor ¥ie — Nop Yoo tan £ 4 (X Xy + ¥, ¥Vigo)

tan T

a system that gives a solution for the problem in question.

When the parameters ¢, and ¢, are cancelled, and by due rearrangement,
the quantity T will appear as a function of 1, then the gear ratio £(f) can already
be expressed in an explicit form, namely:

T —_J" e,(1) de,

%J:wg{z; ~T7() .

tiny{f) =-T"'{t},
and [inally
iy

= =

Of course, the nature of the profile function i decizive as far as the
solution of the equations may become difficult or easy. In somé given case
the method for finding a solution is highly mtrieate. Cases may occur where
the transcendental expressions ean not be solved im a closed form. An issue
is possible by finding some approximation, gemerally, by applying some
iterative method of estimating, often by means of an electronie computer,

Considering the methods known at prezeat, the difficulty can be de-
seribed as follows: By means of suitably chosen parameters, and for profile
curves in contaet at the initial position, generally, with a theoretically correct
centre distanee, the respective equation is rathes simple.

In the case of a varied centre distanee (e.g. when it increases), one of
the gears has to be rotated through a very mﬂﬂgle in order to ereate
a mew mating position. For further calculation. ssch a new configuration
represents the initial position. In such a p-uﬂﬂ.,l‘]le new equation that
deseribes the profile curve, after revolution through & small angle, may assume
a rather complicated form.

Our caleulation can be simplified when “.ﬁ on the wsual equation
co-ordinated to the initial position with an exaet theoretic centre distance.]
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fay we shall investigate angle 3, (for the pinion) and angle 1, (for
through which the respeetive revolution should be performed for
that equations (21) relsting to the common profile point and to
fllelity of the tangent limes should hold true.
B the calculation of the gear ratio i the svstem (23) of equations is
" te: only instead of terms p it s ansle 2. and instead of T it is
% that should he substituted @ all three equations of system (23).
2. angle value 4, of the mmﬁnn 5 taken as a given datum,
sm= of which the parameter values ¢, and ¢,. and the angle 1, have to
slated.
tm once the gear revolution sagle 2 is obtained, it 15 obvious that
| position the profile pointe defined by ¢, and ¢, are in mating contact,
¥alues 7, and ¢, the equation of the normal to the profile can
b down. this line being the commen mormal. Then the momentaneons
€ is found as the intersection point of the said normal and the
dline 0,0,.
fuotient
co,
co,
Lthe momentaneous value of the gear ratio. By iterating this caleula-
i warious values of 1, a series of pairs of co-ordinated values A, and {

(24)

1

des, this method of calculation i well suited for finding the gear
b & cam type gearing, too, when the cam profile is a given eurve,

5. The relative sliding velocity of teeth

#m order to get the value of the relative tooth® sliding velocity, the actual
pral velocity values generated by the revolution around the centres 0,
& should be calculated. Tnasmuch as the profile curves comply with
mdition as postulated for the common normal, the images of the respee-
#tors projected onto the commeon normal are equal to cach other. Tn this
_ vectorial difference of the two peripheral velocities is parallel o
mon tangent line and already equals the relative sliding veloeity

] Let us suppose a positive angular velocity o, around the centre 0, for
pion, and of course, a resulting negative angular velocity w, — @i
\the centre 0, for the gear. Let point P be the locus of the mating

t _:_‘i'ﬁ this point, vector Z, drawn from origin 0. and veetor Z, drawn

azin 0, are co-ordinated. Thus, we obtain as the value of the periph-
#ecity | v, | in point P around ecentre 0,

it [ =1Z, o (with v, as a complex number):
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i

|
|II 5

Fig. @

il &
I ¥,, heing perpendicular to Z,. represents the veloeity vector in this form:

1

o
.P._ H Izllm] -7 _..,_ i
1]

';'f when j Z,/| Z, | represents the unity vector which is perpendicular to vector Z;.
| Consequently,
B == jo, Z; . (25)

In mueh the same way (for point P revelving avound centre )

na| = |2 0 = 12|

iy
B
i

this #, being a complex number, Loo.
Now, v, being perpendicular to vector Z, at a direction determined by

a revolution through (—90°), we obtain:

- 7
= 1] ”-'-[ . %y ]
Al W T
gy A

= 1

(26)
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At every mating point we h

(27)

The relative sliding velocity = s . y difference hetween vee-
tors (25) and (27):

Y = U= jan 2, SO £y ? = (m,z,+ - _l.jj1] ’
: i i

(28)

Of course, Z, is co-ordinated to & I action: in othér words, for vee-
tor Z (i3 1) the term © = #(i,) i= nnderste ace with equation (13).
For common practice, in ral th. of the relative sliding
velocily is required. We caleal he = svalue of vector v, as defined
by formula (28) as follows:
sSinoe
Zy — [ Xy cosma— ¥ sin o, 1] -

X

L ni' 143 [Xut_ I-‘--'.'.E:-' L‘

i T

therefore

J 142
|}[%ﬁ Exlf_.._ ;

and

o
oy

ot = 0 |2 (1) (G s x0) (1407 (X3t V)|

or

o = = Yo 2a(14)(X,, sim o 5 Vg oo o (1 +02 (XE Y3 (29)

and t = ;) according to Eq. (13).
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In some papers (e.gz. [3] and [4]) dealing with frictional losses of gears
we find the statement ul‘.uunling to which it can he inferred from EXPETE-
ments with eircolur dises, that the friction ratio iz a function of dise radii
amd veloecity values, When these results should be taken into consideration
in dealing with toothed gears, the friction losses can only be found when
the various radii at the mating periods of the profile curvatures are taken
mto aceount. Now, with a given centre distance @ and a given gear ratio i,
the gear profile is univocally defined by the assumed pinion profile; conse-
quently, with already known values of the angular velocity, the relative slip
velocity depends on the geometric formation of the profiles — thus, a certain
univoeal relationship between the relative sliding velocity and the eurvature
radius at the mating point is an irrefutable consequence.

0=0y A
Fig. Tt

Let the centre 0 of the pinion. the eentre distanes o and the cear rati
I P £
i be given. By these data, the form of the line of action (k) iz defined (Fig. 10)
Let point P he the contact point of the two profiles at a point of time ¢
at the same time, the tangent line fér,) at point P iz perpendicular to tk
common normal (r.) al the pitch point. When the clementary period of time
Ar has elapsed, it is in point {) where the mating contact takes place. During
this; in consequence of a revolution through angle AP, point P movesto P
and §} moves to (.
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The tangent line (é,) at point ' is perpendienlar to the profile normal
(). The angle between the two normals (n, and n) will be denoted as e,

The angle hetween the tangent lines at P and (), as well as that hetween
the tangent lives st P’ ua (' is invariably . I,

Since at the initial position tangent (¢} is perpendicular Lo the normal
(m.), and after a time At elapsed the tangent (65) will be perpendicular to
the normal (ng). so we have:

I (s by) = A3, (30)

On the other hand, the angle hetween {EP} and (&) ean be conceived
as the sum of dz, and 1D, because Az, is the angle between the langents
at P and @ in the initial pesition, and the tangent (é.) reaches the position
&) after a revolution throuch the le Ad 2 consequently
{ G 2 ang I q ¥

< (81 6g) = du, + AT, . (31)
From (30) and (31) we have

;_I-:r.n = .-_igp = ,-Jﬂ-'l .
Au, = Az, — AP, .

We denote the length of the pgmfﬁt arc }3—() as Js. The mating point
moves, during the time At along the are Js;; thus, the average veloeity of
the mating point between P and @ amounts to

(52)

P =
.t

Dividing both numerator and deneminator by lx,:

Js”'JzEE__ Asy da,  deSde,  AD, s, Az, Ay

Ui SR .

Atjde, Az, A Az, e Ay | At i

].{33}

Assuming a trend to the limit Jf =0 the angle iz, will similarly trend to
L, o+ O
In this sense
1
I.lI.T.I -—jﬂ_ J — ]im 1 — T m——
dnt | dwy | a0 dzds, g

where, in conformity with itz definition. g, denotes the curvature of the pro=
file at point P,
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Thus, the angular velocity of the normal to the profile revolving around
point € is found to be:

& ‘ﬂ'x.'l
e
dr—0 At
and the angular velocity of the pinion’s
A
b ==ty
a0 g

Since the average velocity v, [at the left-hand side of K. (33)] assumes,
when the Limit At — 0 is reached, the value vy which represents the momen-
taneous tangential veloeity of the pinion in point P, we obtain:

vy = — (@),
41
Instead of the muiprue.al of curvature, the radius of curvature (g, in point P)
ecan be substitated, namely:
vy = oyf®, — @) {34)

are | £.- jrgp)

‘\-, - Tire ot action
\ ..Zr. fra
fmll".
i
0y *
Fig. 11

According to a similar reasoning the tangential velocity of the gear at the
mating puint is found to be equal to:

Uy == E._"{ﬂ}.': T mﬂ} {st

where p, is the radius of curvature of the gear profile at P.
Thus. we find the relative sliding velocity to be expressed as:

v = |, — vyl = | thlee, — th) — paleo, — '5[’;.".:' 5
and reaaranged:
o= [ =) — b 5, —Ca o (36)

For this expression, the angnlar velocity w, will be caleulated as [ollows:
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The dizection of a profile normal co-ordinated to an arbitrary mating
point is defined by the veetor (Fig. 11)
Ly — jrey -

Taking imto consideration the angle between this veector and the axis Xy
and forming the first derivative of this are with respect to time, we olitain
the angular veloecity in question:

d .
= 5 are (Z, _Fgr}‘

The vector Z.. which describes the line of action, i# a fonction of the pinion-
& P
arameter ¢,. According to the chain rule we have:
P T =

d . . dip
€, ——are (£ —jry ¥ (37)

dy, d
By using the known function Z(p,) and by making the following trans-
formation

are (Zy — jry;) = are (X, +jY,— jry) = are [Xy + 7Y — ra)]
Care tan -l_ ;5
Ay

the derivative of the latter with respect to g, can be directly deduced. the
differential quotient dy /dt can be caleulated from the funetion Vi) =0
according to Eq. (11).

6. The tooth force in normal direction

Sappose that — by neglecting the frictional force the pinion is
rotated by a constant moment | I,: Contact point of the profiles is the point P
on the hine of action (Fig. 12). Then, the tooth force aeting in the normal diree-
tion is expressed:

¥ itir
k
with k being the lever arm of the foree F,. This k is found, when, consider-
ing the local vector eo-ordinated to the maling point P, we draw its pro-
jeetion onto the dircction of the tangent veetor w21 eo-ordinated to point P.
(The left-hand index indicates the co-ordination of this vector Z{ 1o the line
of aetion.)
In conformity with the geometric explanation of Eq. (14), we have:

A X+ ¥ ¥y
f X2+ (38)
= m:'?’l} =
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o Llie o oction
e

: %%f

T
e

o
o
Fie

Fig. 12

Applying Eq. (2) by which the vector Z; — Z(y,: 1) is deseribed, the numer-
ator in {38) can be expressed as follows:
e L S i L
= [Xlr) cos @ tgy) — Yolpy) sin o, fpy)] -
- [Nl eos o, tg,) — Yiglp)) sin o tg)] -
+ [Xgly) sin oy tp) + Y lips) cos oy tpl)]
- [Xilg) sin 0, ) + Yiile) eos o, )] =
= Xyl Xialps) + Yalr) Youliy) -

The denominator is expressed:
| Xadle )+ Yl

As gan he seen, neither the nnmerator nor the denominator of k is a function
of 1. Without referring to the dependence on g we can wrile:

-"*-_nl_xlh |'};|1Y:u
I X+ Yid
Should the numerator equal zero, the rotating moment would vanish. Again,
according 1o Eq. (17), the numerator cannot be equal to zero, neither can
the denominator be equal to zero [in compliance with Eq. (16)].

Considering the profiles in question, the quantity kb can never be equal
to zero. Thus, with Eq. (39}, the normal tooth foree is vxpressed by:

(39)

[y
F—a . Y XoitYe (40
= X )
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7. Applications

We shall demonstrate, in point 7.1, a eertain application of the rela-
tions as shown in chapters 1...6 especially for the case of a pair of gears
consisting of a toothed wheel having eyeloidal profiles and of another gear
having reetilinear profiles. This speeial example can be taken as being nseful
because the results as well as the manner of their deduction by means of
elementary notions are well known.

In point 7.2, a special case is dealt with.

T.1 Pair of gears having a rectilinear and a cveloidal toothing, respectively

With reference Lo Fig. 13. the toothed wheel (1) has epieyeloidal pro-
files. This profile is generated by a circle having a radius ¢ and revolving
along the piteh cirele. In the initial position of the profile, the revolving eirele
touches the pitch cirele of gear (1) at the piteh point €. Now, the angle hetween
the axis ¥ and the line conneeting centre 0, with the centre of the rolling

Fig. 13
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cirele should be chosen as the desived params pe rolling eircle
rotates around its centre through the angle & pure Tolling
motion (without any sliding):

rigy = cf

T
= gy (11)

The profile is delineated by a point of the = position
of which lies at the pitch point €. Tn accordan he co-ordinates
of the eycloidal point P are expressed:

Koy, = ey ¢ singy

Y, = (r, + c) cosgy
In view of

& =90 — (58
&+ 8 4 s
we can write:

Xy = (ry + ¢y simgpy— ﬂ.cdﬂﬁ.

i
= (ry -+ ¢) sm g, — csin (F

Y= {rl -+ €} cos == !‘.'Hil
~ (ry <) cosypy —ccosf

and combined with Eq. (41) we obtain:

Xy = (ri-h-c) sing, — co8

Y, = (rihe)cosgy _‘..- :

For our nmmeric example we phiall eonnt ‘|

from where

With these data, we can write:

and for the profile (p,) in initial position, with
Zyy = {3 zin gy — s 3
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Let the gear (1) rotate in a positive sense at an angular velocity w; = L, then the veetor by

which the rotating profile {p.) is deseribed can be expressed, with reference to Eq. (2), us
follows:
Zy = [{3 &im ip; — sin 3@ cost — (3 cos Py — tos ey sint] -
+J [ sinp, — sin 3 sin e - (3 cosg, — cos dpy ) cose]. (712}

In order to find the formular for profife (Z). Eq. (8} serves as basis: first, we will express the
concrete formmlae of the respective derivatives:

Xia =3 cosgpy — Figos 3, = Ieow g, — cos 3 ik
and

Yiin= —3sing, + 3$sin Spy = 3 —sing, |-win 3ip)).
Thus, the Eq. (8) takes the Torm:

2 (3 simgy, —=in 3} - 3cos g, —cos 3p,) | (3 cos gy —ees3my) - 3 —sin g, | sin 3g)] —
—4 [3{cospy — cos 3p) sin g + 3 —sin Py s 3 ens ] e (L (44}
None, in order to express the variable as a funetion of ¢, we first shall divide the X e
sion (44} by the prodoct 2 - 3: this revalte in the form:
(3 =inpy, —ain 3gy) (eos gy — cos 3p, ) =
b {3 eos gy — cos 8, ) (—=ing; + sin )=

=2 Heosq, —cos 3p)siny & (—sing, - 3in 5, ) eas ], (44a)
After performing the operations at the lefi-hand side in {44a). we obiain the expres-

s
4 sinpy cos ;-

After disision and moltiplication of the right-hand sde i (Ha), by the following
members

]:(-vma Py — Cos 3, F | (—sin @ o s 3l = 2 win g,
the right-hand side will take 1he form:

o

- £ iy uos._&;r_l_ Bl gin 3, —=in o
= -‘m?'[ 2 sinpy ) 2 sin gy W] .

After tran-forming the members within the square brackers, by using the relation

e B ——

cod @y — eos Jpy, = 4 cos g, sinte,

the first frartion can be wriltten s follows:

4 cos gy sin? g
L 2 X — 3

=i = % Sy = B4 H

T sing, Py 1 T

and similarly. by osing the relation

sin 3,
the second fraetion s written:

-singy, = 2ding cos Ly, ,

2 i gy cos I

e = cos 2.
2 sin

With these simplified members, . (42a) takes the form:

Ssingy eotipy = 4 sin gy [En yrsin 2p, - cosy cos 2y,
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and
oy ==k Sy
or
i o =2p — %
viz,

Y= - 4s)

The expression of prolile (p.) is obtained, when the o

Z, [y vipd] = Zigd
= ({3 sin g, — sin 3p,) cos 2oy — (3 cosgy win ]+
+ J [(3 sin gy — sin dp,) sin Zep, 4 (3 cos gy —— eosq, ]

wied into Faq. (3)

The real part of veptor £, can be written ‘as:

X2 = 3 sinp, cos 2ip, — sin 3, cos Sp, — 3 cos B+ Lsing, =
= —3 il g, —sing S

and the imaginary part is:

Yoo = 3 sin g sin 2p, —ein 3p, sin Zp, L 3 cosg ~ 4 cos gy

= 3 eoxip; — cosip; — 46

Thus, the profile (p) i= expressed in the :'gatc'ﬂ.',_-

Xa=%
] 46
v. (46)
This represents. in words, a straight line ﬂ.l:t = resalt could
be expected, unduu.htaﬂ]}r, since the rolling cicele a= large as the

eadiung r; = 2 of the pitch cirele within which o or.
In this way the problem as set op n g [
We shell find the rquation of the line of o | tiou l"{lgn: t}
avcording to Eq. (11} is of a similar form as & 15 i
the envelope curve. The difference consists in sals . ‘
metric fumetionia) instead of fy. As far as the form 8 : i, the valoe
of the angnlar velocity has no importance. F
When aceording to Eiq. (3) the covelope rumve w
obtained

ip =g =
[eie Kq. (43)], and in the present case, we fi _' 3 z

iy &= (47}

Patting this expression inte Eq. (2} of profils [ e line ol action

i found to be:
Zyp == [(3win gy —=in 3q, ) ro=gh
- 5 1(3 sin gy — sin 3q,) simgy (1112)
The real part is expressed by: !
xk = (Fding, —din qu.) H-ﬁ
—{sin 3q, cos @ — tos gy .
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and the imaginary part by:

Y= (3 sing, —sin 3,) sing, + (Jcosq, — cos Ip,) cos g, —=
=3 — (cos 3p; cos gy -+ sin 3, sing) = 3 — eos (3, —p,) =

=3 —oo0s 2, . 1
Thus, the parametric equations of the line of action o ax followes: I
Xy = —sin2p;, Yym3 —cosle,. (48)

The parameter ¢; can be cancelled in the following way: '
.-Y_r.- = sin El'pl ® }'_h. 3= —ros 29"| -
By taking the squares und adding them. we obtain:
X+ (Y—3p—1.

Consequently. the line of action Tepresents an arc as a portion of a direle i chown in Fig. 14.

This is quite underst-andable, becanse of the following relationship: when profile (pa) Mmoves

around eentee 0., we find a right-angled triangle formed by the hypotenuse (LC and the

sides PC and OLF where PC represents a portion of the normal to the profile coordinated 1
to point P, and (P i the roding. Consequently, point P representing the right-ungle corner

moves along & crcolar ore. |

b
|:|1-_:.

hY

R TR i
i

1
P
Daly X '
Fig. 14 |
The gear rativ suriation which occurs when the ovigingl contre distunee o gets altered ‘I

should he examined; c.z. we allow the value o, to be decrsased ty a =i, — Ao In Fig. 15 the

dash curves represent the initial position of the mating profiles when distanee a is kept

unchanged and matio i remains constant. (In this position, € represents the mating contaet
aint. §

3 The centre distance o should be modified inasmueh g centre ) remains in the original

position, wheress eentre (), comes nearer 1o by the decrement Jg, and reaches the new

position OF.

When the two gears have pecformed some revolution throngh the angles 4, and i
respectively (measnred from the initial position), the new mating point is ai P* o thic posi-
tion, the normuel to the profile ot the new pitch point will mot prodoce the same division
ratin of the centre distance o a5 was with the original distanece #y; thus the gear ratio { is also
subjected to some change, characterized by the new dividing point C*. Now, we retorn to
Eqs (23) by which the mating conditions are establishied, but we subsiitate Ay instead of 1,
dnd A instead of T.
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For this purpose, we apply:

XNy =3dsing, — sndg
Yor = 3 cos gy — con Ipg o

andd
Xy = 3leos p, — cos 3p
¥ii = 3 —sing, — sin S
Thus, Eqs (23) are rewritien:
(&-sin gy — sin 3, ) cos-dy — (3 cosgy —
(3 sin ey —sin Sy ) sin Ay - (Seosg, —
Bleos @, - vos D) 2 sin g,
Lan J.g =
Sensgy — cos 3p ) Eing
Some kind of simplification seems 1o e eter i, being
the same lor both profiles, The 3rd cquat k mzed. There iz

a simplifieation by 6-and by sing, poﬂihh,
o5 gy — cos 3, — 4 cosg

—sin 4 sm
can be applicd:

2 qm Ty Sity .

tan i
e = 3 Sin @, sl S

Both numerator and denominntor can I:.

to obtain:

tan 2
Lan .1: T ey

'-““5‘?1-... :
dy = Iy — Ry
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We are able to transform the Ist and the 2nd formulae among Fags (7/23):

3 sin gy cos & — sin 3y, cos Ay — 3 cosgy sin Ay 4 cos 3@y sin A = —2 cosg sin A,
Jsn g,y sin &y — =in 3p,sin d, + Jeosg cosdy —eos iy cos Ay = a — Zeosq; oos Ax,
Fsin (i, — A)—sin (3 —4)) 2 eas gy sin 4,
Emi[-;l" Ag) —cos (3py — A = a— Zeosq con dy .

We form the square of both sides and add them together

10— 6 eos 2y = 4 eostqy La cos ¢ cos A |l

iRy - e . (50}

lo = smmesweal example; we put

e Bl wiwoE =:0.9;
thus,
A cosF gy boeos 2, | 5221

cos d, = =
2 15,0 cos o,

1)

With wasisss values of ¢, and by using Eq. (49) the angles 4, or, by Eq. (51), the angles A,
are calemlated. The reculting values (7. 4. 4;) give us every required point of contact, at the
same thme Being the mating point in a position when gear (2) revolved throngh angle A
The petesd mocmal to the profile passes throngh the resulting point P® (X*. Y*) and s
rquation gees a8 follows:

Y —¥* = m{X — X*),
where
X® = —Benap o sind,

¥* = 39 —2 cosipy cos Aa s
o —gam AL

Now wr fimd the co-ordinates of point €* which represents the interseotion point of the normal
to the prafile soth the centre line OO 1 (X* = 0),

(oo — YY"+ tan LX* = G,C*, (52)
und
e
(3= _ = {ﬁ?'}
0,0

rep:euhti: mamentaneous value of the Eear ratio, Oonr nomerical resulta arve shown in the

following Talde:
5. iy E I XK= i o, c* | L | é
o= — 125507 10" 12250717 0,444 1850 1,544 2051 1.109
1= — 125527507 L4=52" 50" 0,440 1,951 1850 2050 1,108
and so ferth.

For colealating the relative sliding velocity we shall return Lo Heq. (29)
Let the given centre distance ¢ equal 4 and the angular velocity o, equal 1; thus,
Lthe expression o= exposed under the sipuars root sign i (29), of course, with ¢ = oy laecord-
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ing to (47)] hos te be written as:
|pel2 =8 —2-4 {1+ 1) [(3 sin gy — sin 3y ) singy =
B AL LY (3 singy —sindy) + (3 cospy —

o5 dgy) cos g+
6 (1 — <o 27.)

2
ar 2.
= (x129)
Calenlation of the normal toeth foree according to to .ﬁ,
F. = M, 113 (eos gy — cos 3p,) 0 [3{—-.. Fa I
fl (& stngp, —sin 3p,) 3 (eos 3, — cos 3p,)- |- (3 cosp, M sin g, -1-5in 3p,)

where the expression nnder the sqoare rool Sign s redoeed
hosin® gy .
thus, the nomerator cquals = 6 sing, and the deno

12 sioopy coegy
and consequently:

f =in gy

P = M o G g, cos g,

= M, (7140}

2

7.2 Case of a special app
7.2.1. Example of a cam profile

This cage s zhown in Fig. 16. Here. the profile of
straight line passing theough centre (0, and the profile of =
having the radine r which sawings. with a conneecting lever of &
the possibility that this circle can, at the same time rotate, s
ical significance, The mechanizm ns shown in Fig. 16, assumes e
the equation in the system of eo-ordinates x5, can be writtes

(1) ks eharacterized as a
) represcnts o circle
m, sround centre ()

M hae oo mechan-

ion, Far profile (1),

Xy =y cosx Xg=mu

(54)
Yig =i dina Ta= ﬂ

Ed
Further, ¢, represents the distance of the moving point -[ eatile (1) from cenkre ) and
the position of this straight profile is characterized by

L {25)
o m
sim ||{i - :-E - ].{n—-f__g'
(a — m)? a—mm
As for the profile (2), expressed in the svstem of Lu-uﬂim.ﬂ-% Wi i Write:
Ay = rEo8 T, (o = =rﬁ.ﬁ
Yo =(m | renp), Y= —romgs (36)

where angle s i# Lo be understond in accordance with Fig. I.G.,.
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[
Fig. 16

Suppose that member (1) rotates aroand centre th in the positive sense at the angular
weloeity o, = 1,

What is required; is 1o kuow the gear ratio i, = §:

Becurring to Eqs (23) we can write

Freonxcodt —g, s xsing =reosp;cos T—(m L raing)sin T
Py 05 2 Sin L - g sin g cos o g —reosgesin T — (m + rsing) s T
{—eos & r cos @, — r sin gy sin &) — (— 7 cos x sin iy — FSITE 0 COB ) tan ¢

LanT___(-—cusmrm;i@: ~+ rEin (o Sina) tan £ | { "rﬁﬂ:lﬁﬂlnli‘!: r3inz cosp) (57)

Adter simplification und rearrangement:
Frovd (o 1) = rega(py - T)— msin T,
pisinfe ) =a—rsn(p -+ T) —meos T

tan T — - o Age + o) tan £ — cos (g, + )
—in (g + &) — cos (e - o) Ganm

In the latter equation an amplification by —1 seems to be snitulle;

S ros gy | a} —sin (g o) tan ¢
© sin (g, &) + cos {pa - &) tan ¢

and after a second amplification by 1fcos s -+ ), we obrain

1 —— tan gy 4 o) tan 1
Py Qe SRR STRINIRE =
tan {i: - ) + tan i tan (e + &) - 1]

< cot [(ps < a) 1] = tan (90° — [(z, |- =) + 1)),
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T'="90°— [{ps 4 b - €] = "
a1 T = 90° — i (59)
By substituting this formula into the Ist and Znd Eqe 3
iy ek (- ) = o o [U0T — (S
w,osin{x - 1) = e —rsin [90° —
[} 3
y cos (@ < 1) = rsin (x | ) — (00
ysin (o - 1) = 8 —reos(x + 1)
Dividing the latter equation by the former we haves
tan (& + ¢}
that sets down a relation between £ and T. After canes | amd Tearrange-
ment, W ean write: g
eomaninc Gaint o
cos (2 4 t) =
r—msin e -+ ) sin T —aeos (= +
Forming the squares of both sides:
r®: 4+ misin® {x | ¢)sin® T+ of cos® (2 5
— 2ar cos (® | £} - Jamsin (x 2 o) con f=
et cod (e — £) — mTeos{x 4 1) Sf T
and rearranged:
m gin® T+ 2nesin (x - £) [a cos (e [t} — r] o T {r — —f)) =0
By using the root-formula of a cceond-degree equa
First, the discriminant should be expandsds
dan? sin® (o 4 £} [@eos (x| ) — 7 —4m? ([ e <+ =
— Jam? eoat {a -4 g} Im:__ [..‘ -
and eonsequently
sinT=E = umﬂ_{-:c_-i—l}]ﬁin{nc 4= 1) 4 (61)

of eonrse, we apply the positive roof.
With the nomerie data:

wi have:

and

[1 —4 eos (¢ + /3)] sin (¢ + 7(3) + con

AT
sn ;
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From this we obtain the angniar revolution of the gear member (I) through the time

T — ave xig PL— 3 €08 (¢ -+ 7ID)jsin (¢ + 7/3) + cos ¢+ /3) V4 —T4cos ¢ F mi3) — IF

anid with

== 0T =

I
N ll 3 {'[1 — b cos (¢ + mi3)]sin (¢ -+ =i3) +

cos (¢ + 2/3) 4 [eos (¢ -+ w3) —_T_l"-T ‘
2

- —;:— {4 sind (1 - mE) F [L —deos (6 /3] cos (e | =3)
—dinft 4+ 23— [eos t — =3) — 1]F

|onE {vl v :r-'a}

2[4 ms___{l:_;— a3} — 1] 4 sin { -+ 713) }
i '

-]

0=0 X
Fig. IT
Instead of & genseal reduetion of this cquation. we may confine ourselves to the determina-
tion of the gear ratio at a certain point of time, say at ¢t = 736,
Thus, ;
4 —F3
3, (116 = LI
Ka
and
i == ;= -1.—3 — et {1, T
ity L=t
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The same result ean be obtained by wsing Eqs (62). First wa s y
through angle ¢ = a/fi in which position the edge of T o ence with
axizs ¥, we obtain

sinT = 1/2_

T == presin 1/2= a6,

in words, the member (2) likewise performed a revolution = /6. In thic
position, the profile normol passes through point C*. As & Fig. 17, this por-
tion is. characterized by the relation: i
O.6% — 2 cos /6 = i:li-

0.C* =4 —J3.

and the momentaneons value of the gear ratio:

in conformity with our first resali.
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Komplexe Schreibweise im Entwerfen von Zahor
Riteksicht auf Grundfragen des Entwerfens einige reomes ;
ten vou geradversahoten sylindrischen Riderpaaren mimanung Jdes
Gegenprofils 7 einem grgehenon: Untersuchuong der B 4 i
schen und mechanisehen Bedingungen des Eingrifls;

abstamllehlers  entstandenen Thersetzgunzsinderung:  Be : Cleitge-
schwindigheit der Fiihme: Berechnung der momentanen, - .ﬂd:u:m:m
Profil ¢iried der beiden Zobnrider (und dies st gowibs erncheis

Eingriffslinie eindentip bestimmt, tnd dasselbe gilt file | Rades, Die
bier bekanntgemachten Rechnungsmethoden sind — nelss pkaweiss —

dadurch gekenngeichner, dall die Ergchnisse allzemrin =
kleineren Rades bestimmenden Funktionen ausgedriicks

Komnaekcnoe mpeferasnenne 3y fUstsix KoJec mp | ; 5 h
00T SAHUMAETCH  TAKHMIL FeOMETDIIECKIA 3 Meicmms
Sy0EDC DyiuaTay KOMEC ¢ DAPAIIenbULIME OCAME, R
HEPAKT OCIORHYI0 PONL, 4 HMCHHO: ONPENenelte Ko
HPO(RIIRY, AATHE KOITARTHON AL TEOMCTPE
TR (FAULTINEHS ), GHATHT BIMCHCHNS COOTHOIRITHA
DOFPEIHGCTH PACCTOMMIIT MOV OCAMH] BRHYHCTEITE
IYfLER 1 MPHOBEHHOTO SHAYCHEA Yol 3y0LeR B 10
AT IPOEHIL (GHOTO KOTecE (OOLTHD MEHBITED),
KOUTAITHON [IHHAR, & STa dopMma e onpegenser Gopmy
HLOC SePT GHHCHEASMEN B LUTLECHIIEM METOIHE PacieTa
HHEM AETACTCA T0, TT0 PeaVIRTATEL BOOGILE BRID T O TH
DR APOduiiL. Manors Rojeca.
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