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Optimum design of compression struts of circular and square hollow
section made of stainless steel
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ABSTRACT: Optimum design of compression struts of constant cross-section means to determine the profile
sizes, which fulfil the constraints on overall and local buckling simultaneously. Formulae are given for this
minimum-cross-section-area-design of circular and square hollow section rods made of stainless steel. The
design procedure is based on data given by the Eurocode 3 and research results of Rasmussen and Rondal.
The optimum sizes can be calculated for given compression force, effective bar length and type of material.

| INTRODUCTION buckling constraints are simultaneously active. It

The optimum design of tubular trusses needs an
efficient suboptimization method for the design of
compression members. The optimization method for
compression tubular members made of normal
steels, described in Farkas & Jarmai (1997) can also
be used for stainless steel hollow section struts. In
their recent research Rasmussen & Rondal (1997,
2000) proposed column curves for stainless steel
compression members. In Eurocode 3 (1995) a
special part gives design rules for stainless steels.
The Steel Construction Institute published design
rules as well (Burgan 1992, Baddoo 2002). The
corresponding German standards for circular tubes
are DIN 17456 and 17457 (1985), as well as the
available dimensions are given in DIN 2462 (1981).

The main European manufacturers of stainless
steel tubes are as follows: Arcelor Industeel
(Belgium - France), ESAB (Sweden), Salzgitter
Flachstahl (Germany), Stainless Steel World (The
Netherlands).

It is shown in (Farkas & Jarmai 1997) that the
local buckling slenderness of circular hollow section
(CHS) and square hollow section (SHS) J. = D/1,
or 0 =b/t; (Fig.l) determines the economy of a
cross-section. Thus, to achieve an economic (mini-
mum cross-sectional area) cross-section, the local
buckling factor should be as large as possible.

It is also shown in (Farkas & Jarmai 1997) that
the minimum cross-sectional-area-solution corre-
sponds to that strut, for which the overall and local

should be mentioned that this coupled instability
does not decrease the load carrying capacity, since in
both constraints the effect of initial imperfections is
considered.
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Figure 1. Dimensions of CHS and SHS

2 PROBLEM FORMULATION

A stainless steel type is characterized by the follow-
ing material and column curve data:

Ey,Cuas By A Ay, (see Egs. 1 — 10). In the follo-
wing we use the subscript C for CHS and S for SHS.
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The overall flexural buckling constraint is given

by
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The local buckling constraints are as follows:
D/1. <6, and b/t; <6 (1)

The optimum design problem is to compute the
profile dimensions for given effective strut length
KL, compression force F, steel type and local buck-
ling factor &.

Using the symbols

- 45 4
C:IOOAH:]OF;);:H)A, (12)
0 3
Ay

Ed r I2
Fin[N], 4 in [mm?] and L in [mm].

the overall buckling constraint can be written as
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A computer algorithm is used to solve this con-
straint, i.e. to give y for given x.

The results can be presented in tables or dia-
grams. Knowing yc or ys, the required profile dimen-
sions can be calculated as

100D= fyc.(SC or 1()0[): f_vsﬁ‘, (15)
L V.4 L 4

and
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L L6,

1007, 100b
L Lé

(16)

Designers can select the available profiles accor-
ding to these values.

3 LIMITING SLENDERNESSES FOR LOCAL
BUCKLING CONSTRAINTS

According to Baddoo (2002) for CHS class 3
8. = T4¢;, and for SHS class 3 &, = 28¢
where

275 E
£ = /___.... 17
Vo, 2.05x10° (17

the elastic modulus and the yield stress in MPa.

4 CHARACTERISTIC DATA FOR DIFFERENT
TYPES OF STAINLESS STEELS

According to Rasmussen & Rondal (2000) the cha-
racteristics for S220 and S240 (austenitic alloys) as
well as for S480 (duplex alloys) are given in Table
1.

Table 1. Characteristic data for stainless steels

Characleristics Strength class
5240  S480

Ey (GPa) 200 200 200

Oyn (MPa) 220 240 480

1.24 114 131

018 016 0.18
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According to another article of Rasmussen & Rondal
(1997) the characteristics are given for annealed and
Y% hardened alloys in Table 2.

Table 2. Characteristics for anncaled and % hardened ASCE
(Specification 1990) 201, 301, 316 alloys

Characteristics annecaled Y4 hardened
Egx 107 (MPa) 1.931 1.862

O,- (MPa) 193.1 448.2

o3 1.56 1.27

Jij 0.27 0.16

A 0.55 0.67

A 0.21 0.39

In Table 3 the European and corresponding Ame-
rican stainless steel grades are given.

Table 3. European and American stainless steel grades

European European name American

number (AISI)
1.4301 X5CrNi 18-10 304
1.4307 X2CrNi 18-9 304L
1.4401 X5CrNiMo [7-12-2 316
1.4404 X2CrNiMo 17-12-2 316L
1.4541 X6CrNiTi 18-10 321
1.44571 X6CrNiMoTi 17-12-2 316Ti
1.4362 X2CrNiN 23-4 -
1.4462 X2CrNiMoN 22-5-3 -

Table 4. Optimization results (y¢) for two stainless steels with
characteristics given in Table 2, in the case of CHS

X=10"F/L° 10 100 1000 2000
Yc
Amnealed K= 0.150 0.740 4.095 12.80
K=09 0.138 0.705 3.742 11.90
K=0.75 0.121 0.650 3.058 11.00
K=1 0.132 0518 2.825 4.819
V4 hardened K=0.9 0.120 0483 2.696 4.568
K=0.75 0.103 0432 2479 4.117

5 OPTIMIZATION RESULTS FOR TWO
STAINLESS STEELS

Tables 4 and 5 give the optimization results for two
stainless steel types, the characteristics of which are
shown in Table 2, stainless steel number 1.4404
(X2CtNiMo 17-12-2) annealed with a rounded yield
stress of 200 and Y hardened with yield stress of 450
MPa, for CHS and SHS, respectively. Three effec-
tive length factors (K) are considered.

Table 5. Optimization results (1) for two stainless steels with
characteristics given in Table 2, in the case of SHS

x=10*F/L° 10 100 1000 2000
Vs

(=] 0240 1.001 5708 9.546

Annealed K=0.9 0.219 0941 5429 8957
K=0.75 0.187 0.851 4.937 7.785

K=1 0.188 0.679 3336 5709

Y hardened K=0.9 0.168 0.627 3.178 5448
K=0.75 0.142 0549 2929 5013

6 NUMERICAL EXAMPLE

Data: /= 250 kN, L = 5 m, K = 0.75, material:
annealed 1.4404 (AISI 316L) Table 2 and 3, £y =
1931 x 10° MPa, o0,,=200MPa (rounded),
a, B, A, A, from Table 2, CHS.

Equation712: x =100, from Taple 4 yc=0.650.
A = ycL210* 1625 mm~, Equation 17:

&l =1.2952,8,. = 74> =95.84, from Equation
15 we obtain D = 222.65 mm and from Equation 16
fc = 2.32 mm. Using a table of Baddoo (2002) we
select the CHS 273x2.6 with 4 = 2210 mm” and the
radius of gyration r=95.6 mm.

Check of the strut: Equation 6: A, =97.62,
Equation 4: A =0.4018, Equation 10: 77 =0.04514,
Equation 3: ¢ =0.6033, Equation 2: y =0.94%4,
Equation 1: 113.1<172.6 MPa, OK.

7 CONCLUSIONS

Design method is given for CHS and SHS compres-
sion members. The dimensions of a compression
strut can be calculated for given compression force,
effective strut length and steel type. The charac-
teristics of column curves are given according to
Rasmussen and Rondal (1997, 2000). The limiting
slendernesses of local buckling are determined
according to Baddoo (2002). The optimum design
determines the minimum mass solution, since the
constraints on overall and local buckling are fulfilled
simultaneously. In the numerical example optimum
solutions are given for two steel types and for three
effective length factors.
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