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Understanding the relationship between pressure and rock physical parameters, such as 

acoustic velocities, elastic moduli, porosity is essential for exploring and exploiting of 

natural reserves. In this study we introduce petrophysical models which describe the 

relationship between acoustic P, S wave velocities as well as quality factors and pressure. 

The models are based on the idea that the pore volume of a rock is decreasing with 

increasing pressure. On the basis of the models the pressure dependent Lamé coefficients 

and loss angles were deduced. Laboratory measured acoustic P and S wave velocities and 

quality factors as a function of pressure were inverted to prove the applicability of the 

models and to obtain that of parameters. The quality checked joint inversion results showed 

that the calculated and measured data matched accurately and also proved that the 

suggested petrophysical models perform well in practice. 
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1. Introduction 
 

The knowledge of pressure dependence of rock physical parameters has a key role in 

the accurate interpretation of geophysical measurement data. Investigation of acoustic wave 

velocities and elastic properties has a great significance in seismic practice. Acoustic 

velocities are measured in the laboratory mostly by using the pulse transmission technique 

(Toksöz et al. 1979). The detection of transverse wave arrival is a greater challenge than that 

of the longitudinal one. The reason is that at small transducer-receiver distances the 

differentiation of P and S waves is difficult, however, if the distances are increased then also 

the attenuation increases and the signal-to-noise ratio decreases. The velocities of acoustic 

waves propagating through different types of rocks under varying load (Wyllie et al. 1958; 

Stacey 1976; Sengun et al. 2011) and pore pressure (Nur and Simmons 1969; Yu et al. 1993; 

Darot and Reuschlé 2000; He and Schmitt 2006) are often investigated. It is observed that 

pressure has greater influence on velocities in the beginning phase of loading, later it lessens 

and the velocities tend to a limit value. Two main principles were published to explain this 

process. After Birch’s (1960) consideration the reason of the velocity increase is the 

decreasing pore volume with increasing pressure. Walsh and Brace (1964) explain it with the 

closure of microcracks. Experiments demonstrate that beside other factors the type of pore 

fluid (Toksöz et al. 1979; Khazanehdari and McCann 2005), the grain size (Prasad and 

Meissner 1992; Prasad 2002) have influence on the scale of pressure dependence. A nonlinear 

relationship was proved by several empirical equations (Eberhart-Phillips et al. 1989; Freund 

1992; Jones 1995; Khaksar et al. 1999; Wepfer and Christensen 1991), however in these 

equations only the regression parameters are given, they do not provide the physical 

explanation of the process. In the followings petrophysical models are introduced which 

remedies this deficiency. 



Beside the P and S wave velocities the pressure dependence of quality factors ( Q , 

Q ) or rather the attenuation (absorption coefficients) are often also investigated. To 

determine these parameters for example the resonance, ultrasonic pulse propagation, spectral 

ratio or low-frequency methods (Christensen and Wepfer 1989) are used. There are several 

models in the international literature to explain the attenuation of elastic waves, among others 

the nonlinear friction model, the Biot model (Biot 1956a, 1956b), the viscoelastic model 

(Bland 1960) and the elastic dispersion model. The theories for the pressure dependence of 

velocities (Birch 1960; Walsh and Brace 1964) are suitable for the description of the 

relationship between quality factor and pressure. Experiments denote, that the quality factors 

behave similarly to the velocities, a rapid nonlinear increase occurs at the beginning of 

loading (Toksöz et al. 1979). The shale content, saturation and type of saturant, grain size 

influence the scale of pressure dependence (Khazanehdari and McCann 2005; Prasad and 

Meissner 1992; Prasad 2002; Domnesteanu et al. 2002). With the increasing pressure the pore 

volume decreases (or the microcracks close), the contacts between the grains become better 

and better thus the measurable absorption coefficient decreases and the quality factor 

increases. 

Models are the simplified reality, where we keep the most important features and 

neglect the properties which do not or not substantially influence the examined process. 

During the development of the following rock physical models, the seismic/acoustic wave 

propagation phenomena is discussed with the application of the constant Q model, where the 

velocities and the quality factors - like phenomenological features - are rock stress dependent. 

With the assumption of the constant Q model after determining the velocities and quality 

factors at any pressure by inversion, the pressure dependent elastic parameters (for example 

the Lamé coefficients) and the loss angles can be deduced. 

 

2. Petrophysical models describing the pressure dependence of acoustic velocities 

 

As it was already mentioned, two basic ideas were published to explain the pressure 

dependence of acoustic wave velocities. Walsh and Brace (1964) connected it to the closure 

of microcracks, but the physical and mathematical description of the relationship remained 

unexplained. Dobróka and Somogyi Molnár (2012) developed a rock physical model for the 

stress dependency of longitudinal wave velocity based on the number of open microcracks. 

The basis of the model is that if we create a d  stress increase in the rock, we find that dN  

(the change of the number of open microcracks) is directly proportional to the applied d  

stress increase. At the same time dN  is directly proportional to N . These assumptions are 

merged in the differential equation ( N  is a material dependent rock physical parameter) 

 

 dNdN N . (1) 

 

Eq. (1) can be written in general form as 

 

 dXdX x , 

 

where X  is an extensive quantity (e.g. number of open microcracks, pore volume or area) 

which significantly influences the pressure effect. 

Choosing pore volume as external quantity and applying similar assumptions, a 

petrophysical model can be derived for Birch’s (1960) theory. Namely, that the decreasing 

pore volume is the reason for the increasing velocities under loading. Since both the 

longitudinal and transverse waves have an important role in the seismic exploration of 



geological structures, the extension of velocity model for S wave is reasonable. The model is 

based on the pore volume or rather the change in pore volume, which is phenomenological 

isotropic, hence the model for longitudinal wave velocity can be rewritten for the transverse 

wave by substituting the relating velocities. It is especially important because both phase 

velocities are required to give the pressure dependence of elastic moduli. 

Let us introduce the parameter V as the pore volume (in a unit volume of a rock). We 

assume that a d  stress increase applied to the rock will generate a dV  change in pore 

volume directly proportional to the change in stress. Eqs. (2) summarize these assumptions in 

a differential equation and its solution 

 

 VddV V-    →   σ)(-λexpVV V0 , (2) 

 

where V  proportionality factor is a material dependent rock physical parameter, 0V  is the 

pore volume at stress-free state ( 0 ). The negative signs represent that the increasing stress 

decreases the pore volume. As the volume does not show anisotropy, Eqs. (2) are the base of 

the model equations for both the P and S waves. We assume also a linear relationship between 

the infinitesimal change of wave velocities ( d  for P wave and d  for S wave) and the 

change in pore volume 

 

dVd  - ,     dVd  - , (3) 

 

where   and   are proportionality factors, new material characteristics respectively for P 

and S waves. The negative signs represent that the velocity is increasing with decreasing pore 

volume. Combining the assumptions of Eqs. (2-3) and solve the differential equation one can 

obtain 

 

  d)exp(Vd V0V -    →   )exp(VK V01   -- , 

  d)exp(Vd V0V -    →   )exp(VK V02   -- , (4) 

 

where 1K  and 2K  are integration constants which can be computed from Eqs. (4) as 

010 VK  -  and 020 VK  - , where 0  and 0  are the propagation velocities at stress-

free state which can be measured in laboratory. In the framework of the model, the velocities 

of acoustic waves increase from 0  and 0  (at zero pressure) to 0  0max  and 

0  0max  (at high pressure, when all the pores are closed). So, 0  and 0  can be 

considered the velocity-drops (compared to the fully compacted state where the pore volume 

equals zero) caused by the presence of pores at zero pressure (Ji et al. 2007). With introducing 

the notations 00 V  , 00 V   Eqs. (4) can be rewritten in the forms 
 

))exp(1( V00  -- ,     ))exp(1( V00  -- . (5) 

 

Eqs. (5) provide a theoretical connection between the propagation velocity and rock pressure. 

Note that in the range of high pressures, reaching a critical pressure (Anselmetti and Eberli 

1997) the reversible range is exceeded and destruction of the sample may occur thus 

decreasing velocities can be observed. This effect is outside of our present investigations. 

Therefore these models are valid only in the reversible range. As it can be seen from the Eqs. 

(5) the V  is a common petrophysical parameter. The physical meaning of V  can be given 



by introducing the notation   max  and   max  (the velocity-drop caused by the 

presence of pores at pressure  ), Eqs. (5) can be written in the forms 

 

)exp( V0  - ,     )exp( V0  - . (6) 

Laboratory tests indicate that the various types of rock response in a different scale to pressure 

changes. This feature can be described with the sensitivity function, which is widely used in 

literature. Hence we introduce the (logarithmic) stress sensitivity of the velocity-drops as 

 

V
d
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  -- . (7) 

 

By using Eqs. (6) it can be seen that the petrophysical characteristic V  is the logarithmic 

stress sensitivity of the velocity-drops (Dobróka and Somogyi Molnár 2012). Note that in the 

framework of our model this characteristic is the same for P and S waves. 

 

3. Rock physical models for the pressure dependence of quality factors 

 

The physical explanation of attenuation of elastic waves can be characterized in two 

ways (Toksöz and Johnston 1981). One type of the models explains the phenomenon of 

attenuation through generalized linear elastic equations (Hooke-law) or modified equations 

permitting some nonlinearity. The other part of models applies new physical and 

mathematical description to interpret possible attenuation mechanisms, which are related to 

the microscopic features of rocks and their behaviour during wave propagation. Following the 

latter policy a rock physical model was introduced for the pressure dependent quality factor of 

longitudinal wave by Dobróka and Somogyi Molnár (2012). Their model refers to the change 

in quality factors caused by the closure of microcracks. Similarly to the velocity models, the 

quality factor models describing the longitudinal and transverse wave attenuation can be 

derived for varying pore volume. Here the constant Q model is applied again. 

The increasing stress causes compaction in the grain structure, e.g. the pore volume 

decreases. As a result increasing quality factors can be measured. Let us assume linear 

relationship between the change of pore volume ( dV ) and the change of quality factors ( dQ  

and dQ ) and introduce Eqs. (8) as model laws 

 

dV-dQ   ,     dV-dQ   , (8) 

 

where the   and   indices represent the quality factors for P and S waves respectively,   

and   are proportionality factors and the negative signs represent that the decreasing pore 

volume results in increasing quality factor. Combining the Eqs. (2) and (8) the following 

relations can be written 

 




 deVdQ Q-

0Q ,     


 deVdQ Q-

0Q . (9) 

 

The quality factors at stress-free state ( 0Q  and 0Q ) can be measured, thus the integration 

constants can be calculated (similarly to the velocity models). Introducing the notations 

00 VQ     and 00 VQ    , Eqs. (9) take the forms 

 



)e-1(QQQ Q-

00



  ,     )e-1(QQQ Q-

00



  , (10) 

 

where Q  is a common material dependent rock physical parameter. It can be seen from the 

model equations that the quality factors change also exponentially with the pressure. The 

0Q  and 0Q  mean the quality factor ranges for the P and S waves, the differences between 

the quality factors at the stress-free state and at maximal stress ( maxQ , maxQ ). 

 

4. The pressure dependence of Lamé coefficients and loss angles 

 

The most often applied model for describing the elastic properties of rocks is the 

model of linear elastic homogeneous isotropic body or Hooke-body. In this case the stresses 

arising in the medium depend linearly from the deformations and this relationship can be 

described with two elastic material characteristics, the Lamé coefficients (   and  ) 

 
2))(()(   ,     ))((2))(()( 2   , (11) 

 

where   is the density (regarded as constant), )(  and )(  are the (pressure dependent) 

transverse and longitudinal velocities. By means of the rock physical models describing the 

pressure dependence of P and S wave velocities, the stress dependence of Lamé coefficients 

can be derived or rather model-like interpreted. 

If measured data of quality factors are also available the pressure dependent moduli 

and dissipative parameters (loss angles - ',  ) can be also deduced. With the assumption of 

constant Q model the Lamé coefficients are complexes  

 

)i1(*   ,     )i1(*   , (12) 

 

where * , *  are the real part of the Lamé coefficients,  ,    are the so-called loss angles for 

which 
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(For small angles  tg ). Solving the wave equations for body waves, the quality factors 

can be calculated as 
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Although the velocities and quality factors are determined during the measurements, the 

“real” material characteristics are ',,,  . The pressure dependent loss angles can be 

deduced as 
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To prove the applicability of the presented models, laboratory measured data published in 

literature were processed, finally the pressure dependent elastic (Lamé coefficients) and 

dissipative (loss angles) parameters were calculated. 

 

5. Samples 

 

Acoustic velocity data were obtained for Berea sandstone from Winkler and Murphy 

(1995) and for Conglomerate from He and Schmitt (2010). The chosen velocity and quality 

factor data of Coal Nr. 16 sample was measured by Yu et al. (1993). All authors applied the 

pulse transmission technique to measure the P and S wave velocities and the spectral ratio 

technique (Toksöz et al. 1979) was used to determine quality factors. The former method 

means that P and S wave transducers and receivers are matched to the end caps of the samples 

and the travel time is measured (Fig.1). The velocities can be calculated easily from the 

sample length and the travel time. In case of the latter method a reference specimen is used 

with very low attenuation properties and the same geometry as the tested specimen. 

 

Fig.1 

 

All measurements were carried out on dry cylindrical samples under uniaxial stress. The 

properties of the samples can be seen in Table 1. 

 

Table 1 

 

Note that at the measurements of Winkler and Murphy (1995) the compressional waves 

propagated parallel to the uniaxial stress and the transverse wave propagated perpendicular 

but with a polarization parallel to the uniaxial stress direction. The published measurement 

data indicate that the velocities and quality factors increase first strongly nonlinearly with 

increasing pressure (because the quantity of pores are relatively high in this region) then in the 

higher pressure range the increase in velocities (with increasing pressure) are moderate which 

can be attributed to the decrease of pore volume of rock sample, i.e. the pores are closing with 

pressure. 
 

6. Case studies for the P and S wave velocity models 
 

Based on measurement data the petrophysical parameters ( 0 , 0 , 0 , 0 , V ) 

appearing in the model equations were determined by means of quality checked joint 

inversion method. In a joint inversion procedure we integrate all of the measurement data into 

one combined data vector and we give an estimate for the P and S wave velocity data in a 

single inversion algorithm, where V  is a common petrophysical parameter connecting the 

two data sets. Eqs. (5) serve as forward modelling equations (model response functions) in 

handling the least squares-based joint inversion problem. The inversion results for both 

samples can be seen in Table 2. 

 

Table 2 

 

The estimation errors of the model parameters - which are in parenthesis after each parameter 

- were calculated using the formula given by Menke (1984) 

 

 iim
mcov

i
 , (16) 

 



which implies the elements of the main diagonal of the covariance matrix in parameter space 

(i=1,...,5 in the given problem). 

To confirm that V  is a common petrophysical parameter we processed P and S wave 

velocity data sets by independent inversion method also. Table 3 contains the estimated 

values. By comparing them it can be seen that V  determined by joint inversion falls between 

the ones calculated by independent inversion and they are approximately the same. Therefore 

it was reasonable to assume in the petrophysical model that V  is the same for P and S waves. 

 

Table 3 

 

With the estimated parameters, the velocities can be calculated at any pressure by 

substituting them into the model equations thereby applying Eqs. (11) the pressure 

dependence of Lamé coefficients can be calculated. In case of the measured Lamé coefficients 

the   and   values were calculated from the measured velocities. The inversion results are 

shown in Figs.2-3, where the solid lines show the calculated functions after 20 iteration steps 

while symbols represent the measured data. 

 

Fig.2 

 

Fig.3 

 

The figures show that the calculated curves fit well to the measured data which proves 

that the petrophysical models describing the pressure dependence of P and S wave velocities 

can be applied well in practice. 

For the characterization of the accuracy of inversion estimates the RMS (D) value was 

calculated according to the following formula (Dobróka et. al 1991) 
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where 
)m(

kd  is the measured data at the k-th pressure and 
)c(

kd  is the k-th calculated data 

which can be computed by the model equations. To characterize the reliability of the 

suggested petrophysical model the mean spread was also calculated by 
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where   is a Kronecker-delta symbol (which equals 1 if i=j, otherwise 0), M  is the number of 

model parameters and )m(corr  is the correlation matrix in parameter space, which provides 

the strength of linear relationships between each pair of model parameters. 

Table 2 contains also the calculated RMS and mean spread values for each sample in 

the last iteration step. It can be seen that the data misfits (RMS) were small and the mean 

spread values indicate that the parameters are in low-moderate correlation, so the inversion 

results are reliable. The application of the suggested models resulted in approximately the 

same data misfit on several sandstone samples. These results confirm the accuracy of the 

inversion estimates and the feasibility of the developed petrophysical models.  

 



7. Case study for the velocity and quality factor models 

 

Similarly to the previous section P, S wave velocity and quality factor data sets 

measured on the presented Coal Nr.16 sample was inverted by means of joint inversion 

processing. The inverse problem was significantly overdetermined; hence the inversion 

procedure was numerically stable and could be handled by a linear inversion technique. The 

calculated parameters together with their estimation errors can be seen in Table 4. 

 

Table 4 

 

With the estimated parameters the velocities and quality factors can be determined at 

any pressure by means of the developed model equations. Figure 4. represents the results, the 

calculated Lamé coefficients and loss angles are produced by Eqs. (11) and (15). 

 

Fig.4 

 

As it can be seen the quality factors similarly to the seismic velocities increase with 

increasing pressure. The rate of increase is high at low pressures and levels off at higher 

pressures. The calculated curves are in good accordance with the measured data, which is 

strengthened by the calculated low RMS values (Table 4). In case of quality factors RMS 

values are higher than those at the velocities which can be explained by the difficulty of 

quality factor measurements. Even so the noise in data space is small-scale, which confirms 

the accuracy of the inversion results and the feasibility of the suggested petrophysical models 

for the explanation of the exponential relationship between the P and S wave 

velocities/quality factors and rock pressure. The moderate (S = 0,48) mean spread value 

confirms also that the inversion results are reliable. 

 

Conclusions 

 

We suggested petrophysical models for describing the connection between the 

velocity/quality factor of P, S waves and rock pressure. Exponential functions for an 

analytical description of the nonlinear velocity/quality factor vs. pressure relationship are 

commonly used. The proposed models - in which six new petrophysical parameters 

0 , 0 , V , 0Q , 0Q , Q  were introduced - provide physical meaning of the 

experimentally observed exponential pressure dependence. The models are valid only in the 

reversible range and are based on the idea that pore volume of the rock is decreasing with 

increasing pressure. For the longitudinal velocity and quality factor it states 

))exp(1( V00  --  and )e-1(QQQ Q-

00



  . The same can be written for the 

transverse wave: ))exp(1( V00  --  and )e-1(QQQ Q-

00



  . In the equations 

0 , 0 , 0Q  and 0Q  are the velocities/quality factors at zero pressure, 0 , 0 , 0Q  and 

0Q  are the velocity/quality factor drops caused by the presence of pores as well as V , Q  

are new petrophysical parameters. After estimating the mentioned model parameters by 

inversion procedure and calculating the velocities/quality factors, the pressure dependence of 

Lamé coefficients and loss angles can be deduced. To prove the applicability of our models it 

was tested on laboratory measured data published in literature and we found a very good 

agreement between measured and calculated data. Inversion results confirmed the accuracy 

and feasibility of the petrophysical models. 
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Legends 

 

Table 1: Properties of the samples. 

Table 2: Estimated model parameters, RMS and mean spread values by joint inversion 

method. 

Table 3: Estimated V  parameter by independent and joint inversion methods. 

Table 4: Estimated model parameters and RMS values for Coal Nr.16 by joint inversion 

method. 

 

Fig.1: Illustration of the pulse transmission technique. 

Fig.2: Velocities/Lamé coefficients vs. uniaxial pressure of Sample Berea sandstone. Data 

obtained by Winkler and Murphy (1995). 

Fig.3: Velocities/Lamé coefficients vs. uniaxial pressure of Sample Conglomerate. Data 

obtained by He and Schmitt (2010). 

Fig.4: Velocities/Lamé coefficients/loss angles vs. uniaxial pressure of Sample Coal Nr.16 

(solid line – calculated data produced by models, asterisks – measured data). Data obtained by 

Yu et al. (1993). 



Tables 

 
Table 1 

 

Sample Characteristics Other properties 
Measured 

quantity 

Berea sandstone 

(Winkler and Murphy 1995) 

homogeneous, weakly 

cemented medium-

grained sandstone, shows 

microcracks 

composed of quartz held 

together by silica,  porosity 

16%, permeability 75 mD, 

average bulk density 2,61 g/cm3 

P and S 

wave 

velocities 

Conglomerate 

(He and Schmitt 2006) 
- 

bulk density 2,3 g/cm3, low 

porosity 

P and S 

wave 

velocities 

Coal Nr.16 

 (Yu et al. 1993) 

Upper Permian Black 

coal,  

homogeneous, 

microbanded in the 

central locality 

Originated from the Bulli Seam 

P, S wave 

velocities 

and quality 

factors 

 

 

Table 2 

 

Sample 

P wave 
Common 

parameter 
S wave 

RMS 

(%) S 

(-) α0 

(m/s) 

Δα0 

(m/s) 

λV 

(1/MPa) 

β0 

(m/s) 

Δβ0 

(m/s) 
α, β µ λ 

Berea 

sandstone 

1891,6 

(±0,0059) 

1813,9 

(±0,0069) 

0,1380 

(±0,0033) 

1295,9 

(±0,0049) 

849,4 

(±0,0068) 
1,48 1,01 3,06 0,44 

Conglomerate 
2323,2 

(±0,0113) 

2801,0 

(±0,0109) 

0,0510 

(±0,0011) 

1418,2 

(±0,0097) 

1973,4 

(±0,0100) 
2,90 3,25 2,52 0,60 

 

Table 3 

 

Sample 
λV by independent inversion 

λV by joint inversion 
P wave S wave 

Berea sandstone 0,1470 0,1293 0,1380 

Conglomerate 0,0504 0,0515 0,0510 

 

 

Table 4 
 

Velocities Common 

parameter 

Quality factors Common 

parameter P wave S wave P wave S wave 

α0 

(km/s) 

Δα0 

(km/s) 

β0 

(km/s) 

Δβ0 

(km/s) 

λV 

(1/MPa) 

Qα0 

(-) 

ΔQα0 

(-) 

Qβ0 

(-) 

ΔQβ0 

(-) 

λQ 

(1/MPa) 

2,23 

(±0,019) 

0,35 

(±0,019) 

1,02 

(±0,007) 

0,17 

(±0,006) 

0,1494 

(±0,0123) 

10,92 

(±1,120) 

53,66 

(±4,313) 

14,09 

(±1,018) 

66,58 

(±4,499) 

0,0293 

(±0,0043) 

RMS = 0,54 % RMS = 7,18 % 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 

 


