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Abstract: Seismic tomography is an important imaging tool in mining, and oil & gas ex-

ploration. The aim of this article is to test outlier sensitivity for a medium sized tomography 

example applied to synthetic data. Throughout the test, tomographic algorithms were ap-

plied to demonstrate the powers of algorithms. One of the major problems in seismic to-

mography is to find an effective tomography algorithm that gives acceptable result just not 

only for Gaussian data but also in the case of non-Gaussian distribution of noise, for exam-

ple when a small portion of data contains large error. The purpose of test was to reduce the 

sensitivity to outliers by using most common algorithms in use today: Conjugated Gradi-

ents (CG) and Simultaneous Iterative Reconstruction Technique (SIRT). We also modified 

the CG and SIRT by utilizing Cauchy-Steiner Weights to define a robust tomography algo-

rithm. 
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1. INTRODUCTION 

In this paper, robust tomography images are produced by utilizing some general-

ized tomography algorithms. Seismic tomography method plays an important role 

to solve some geophysical problems in mining as well as in oil and gas exploration. 

In practice, measured data always contain noise that can cause considerable distor-

tion on the tomographic reconstruction. Non-Gaussian noise distribution (including 

outliers) is extremely dangerous in distorting the tomographic reconstruction. In 

order to reduce the outlier sensitivity, we have applied a generalized version of 

some tomography algorithms. Traditionally, least squares problems in tomography 

have been solved by row action methods such as Algebraic Reconstruction Tech-

nique (ART) or Simultaneous Iterative Reconstruction Technique (SIRT). It was 

also proved [1] that Conjugate Gradient (CG) method can also be used in even 

large-scale tomographic least squares inversion. It is well known in inverse prob-

lem theory that the traditional least square methods give optimal results only if the 

data noises follow a Gaussian distribution. However, in practice Gaussian distribu-

tion seldom occurs. This means that the traditional CG SIRT approaches will not 

give robust results for non-Gaussian data. Cauchy inversion is frequently used in 

geophysical inversion as a robust optimization technique [2]. In this paper we mod-
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ified the traditional algorithms by utilizing the Cauchy-Steiner Weights in order to 

make the CG and SIRT methods more robust. 

 

 

2. EXPERIMENTAL 

Using synthetic travel-time data the generalized (robust) tomography algorithms 

are tested in a medium-sized tomography example. In experiments, the tomography 

model was defined by a rectangular test area of the size 100 × 100 cells (Figure 1). 

In the model three anomalies with velocities 5 km/s (marked red) are located in a ho-

mogeneous background of 4 km/s velocity (blue). Sources and receivers were posi-

tioned along the x and y axes in an arrangement fulfilling the requirement of full 

tomographic ray coverage, so the theoretical (noiseless) travel time data were comput-

ed along 60,000 ray traces. In the model, there are 60,000 known equations and 

10,000 unknown parameters, so this is an overdetermined inverse problem.  

Two datasets were generated for the tests. In Dataset I the ideal (noiseless) da-

taset was contaminated with Gaussian noise (the size of the noise is 1% of the theo-

retical travel-time). Thus, Dataset I follows the Gaussian distribution. In order to 

simulate non-Gaussian noise, we produce another dataset that is highly distorted. 

The second dataset was created from the first one by adding 20% extra noise to a 

randomly selected 20% portion of the data. That means 80% of Dataset II contains 

1% noise parameters and 20% of Dataset II contains outliers (20% extra noise). 
 

 

 

Figure 1. The model used for numerical tests 

 

Dataset II is very noisy, and thus not a typical dataset in practice. However, to 

study the tomographic algorithms it is better to use a challenging dataset to demon-
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strate the power of the method. (In all of our figures the velocity is measured in 

km/s units, the distances are assumed in units of cell’s size along x and y direc-

tions, respectively.) 

 

 

3. MODEL DISTANCE AND DATA DISTANCE 

In order to characterize the accuracy of the reconstruction the (relative) model dis-

tance  
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was used. Here jx  and 
)0(

jx  denotes the slownesses (reciprocal values of the prop-

agation velocities) in the j-th cell of the reconstructed image and the model, respec-

tively, and M is the number of cells. Similarly, the relative data distance was also 

calculated:  
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where N is the number of travel time data. 

 

 

4. CAUCHY-STEINER WEIGHTS AND THE METHOD OF ITERATIVELY RE-

WEIGHTED LEAST SQUARES 

Robust inversion can be achieved in various ways. To solve the least-absolute-

deviation problem, the method of Iteratively Reweighted Least Squares (IRLS) was 

proposed by Scales [3]. Combining the two methods, the IRLS algorithm can be 

applied using Cauchy weights, defined as  
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where 
2  is the scale parameter and kr  is the k-th residual. The scale parameter 

2  

of the Cauchy distribution should be known a priori because the data residuals change 

from iteration to iteration. A condition for the lower bound of the scale parameter was 

derived by Amundsen [2].  
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In the framework of Steiner’s Most Frequent Value (MFV) method [4] the scale 

parameter can be determined in an internal iteration. In the (j+1)-th step of this 

procedure the 
2

1j  (Steiner’s scale factor) can be calculated, once  
2

j  is known, 

as 

 
 






























N

1k

2

2

k

2

j

N

1k
22

k

2

j

2

k

2

1j

r

1

r

r

3




 , (4) 

 

where the  starting value 0  in the 0-th step is given as 
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It can be seen that the above procedure derives the scale parameter from the data 

set (deviation between measured and calculated data). The stop criterion can be 

easily defined by experience (for example by a fixed number of iterations). After 

this the Cauchy-Steiner weights can be calculated by inserting the Steiner’s scale 

parameter (given in the last step of the above internal iterations) into the Cauchy 

formula (3), which gives the form 
 

 
2

k

2

2

k
r

w






. (6) 

 

In a Cauchy-Steiner weighted inverse problem the objective function 
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is minimized using the Iteratively Reweighted Least Squares method. In the frame-

work of this algorithm a 0-th order solution is derived using the (non-weighted) 

LSQ method and the weights are calculated as 
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with 
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where the 
)0(

kt travel times are calculated on the slowness field given by solving the 

LSQ problem. In the first iteration the objective function 
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is minimized, resulting in the linear set of normal equations 
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of the weighted Least Squares method where the W
)0(
 weighting matrix is of the 

diagonal form 
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Here D  is the distance matrix with the kjD elements giving the length of the ray sec-

tion in the j-th cell belonging to the k-th ray, s


 is the slowness vector, t


 is the travel 

time vector. This procedure is repeated, giving the typical j-th iteration step  
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with the  W
)1j( 

 weighting matrix 
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(In these steps the normal equation is linear, because the weights are always calcu-

lated in a previous step. Here we note that each step of these iterations contains an 

internal loop for the determination of the Steiner’s scale parameter.) This iteration 

is repeated until a proper stop criterion is met.  

 

 

5. CONJUGATE GRADIENT METHOD 

In order to solve the normal equations of the type 
 

 bDxDD
TT
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 , (15) 

 

Scales [1] developed a tomographically very efficient variant of the Conjugate Gradi-

ent method. In order to solve the normal equations of the weighted least squares 
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method, this is modified as follows. Let 
o

x


 be an initial estimate and compute the 

vectors 
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and start the iteration 
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where k = 0,1,2... refers to the iteration number. This procedure differs from the ordi-

nary Conjugate Gradient algorithm only at two points, where beside the transpose of 

the D matrix, also the W weight matrix appears. 

 

5.1. Conjugate Gradients with Gaussian dataset 

At first the original (non-weighted) CG algorithm was applied for reconstruction of 

Dataset I. The resulting velocity distribution is shown in Figure 2. 

The model distance is around 6%, which is quite an acceptable result. The im-

age shows a relatively good reconstruction, as the CG algorithm minimizes the  

norm and solves the normal equation of the LSQ method, although the dataset con-

tains 1% Gaussian noise.  
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Figure 2. Tomographic CGRAD inversion of Dataset I 

(data distance: 0.00948; model distance:  0.0579) 

 

 

5.2. Weighted Conjugate Gradients (W-CGRAD) with Gaussian data 

If the ordinary Weighted Conjugate Gradients (W-CGRAD) algorithm is applied to 

Gaussian data (Dataset I), the velocity distribution looks as presented in Figure 3. 

 

 

Figure 3. Tomographic W-CG inversion of Dataset 1 (model distance: 0.0641) 
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The Conjugate Gradients result in Figure 2 is slightly better, because the W-

CGRAD method solves the Gaussian least squares problem and the dataset follows 

a Gaussian distribution (the optimal method is the LSQ without weighting). 

 

5.3. Conjugate Gradients with non-Gaussian dataset 

If the ordinary Conjugate Gradients (CGRAD) algorithm is applied to non-

Gaussian data (Dataset II), the velocity distribution looks as presented in Figure 4. 

 

 

 

Figure 4. Ordinary tomographic CGRAD inversion of Dataset II containing  

outliers (model distance: 0.250) 

 

 

In this case the model distance is 25%, which is really high for the tomography 

model. The image is highly distorted and almost unrecognizable. This result shows 

that the simple Gaussian Least Square Method is very sensitive to non-Gaussian 

noises, for example outliers in the datasets.  

 

5.4. Weighted Conjugate Gradients with non-Gaussian dataset 

If the ordinary Conjugate Gradients algorithm is modified to solve the normal equa-

tions of the Weighted LSQ method with the use of Cauchy-Steiner Weights, a robust 

tomography method can be defined (W-CGRAD). Figure 5 shows the reconstructed 

image where the weighted version of CG algorithm is applied to process Dataset II. It 

can be seen that the influence of outliers is highly reduced due to the weighting and a 

highly improved image is obtained. This result shows that the use of Cauchy-Steiner 

weights is very efficient in reducing the influence of outliers. 
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Figure 5. The tomographic reconstruction of Dataset II (containing outliers) using 

the weighted W-CGRAD method (Model distance: 0.0871) 

 

 

6. SIMULTANEOUS ITERATIVE RECONSTRUCTION TECHNIQUE (SIRT) 

Firstly the back projection method was the first to be used for seismic tomography. 

Later the Least Square problems in tomography came to be solved by Algebraic 

Reconstruction Technique (ART) and Simultaneous Iterative Reconstruction Tech-

nique (SIRT). SIRT remains one of the most frequently used iterative methods in 

seismic tomography with the improvement formula 
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jQ  is the number of traces running through the j-th cell, 
)( q

ir means the difference 

between the i-th measured and calculated data and ijD  is the ray section of the i-th 

ray in the j-th cell. 

As can be seen, the SIRT formula calculates the arithmetic mean of the ART 

corrections calculated for the given (j-th) cell. It is well known that arithmetic 

mean is efficient only if the data noise follows Gaussian distribution. In our case, 

we also have non-Gaussian noise distribution. Therefore, we have to use the 

weighted mean instead of arithmetic one 
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where jQ  is the number of traces covered in the j-th cell, 
)( q

ir means the difference 

between measured and calculated data, ijD is the ray section of the i-th ray trace in 

the j-th cell and iiW  is the Cauchy-Steiner weight belonging to the i-th travel time. 

 

6.1. Simultaneous Iterative Reconstruction Technique (SIRT) with Gaussian 

dataset 

It is well known that the SIRT method is one of the best methods in tomography 

when the distribution of noises follows Gaussian statistics. This can be proved by 

using Dataset I in a SIRT reconstruction.  

 

 

 

Figure 6. Tomographic SIRT inversion of tDataset I  

(data distance: 0.00973; model distance: 0.0216) 

 

 

Figure 6 shows that the SIRT method gives nearly three times better model dis-

tance compared to the results of CG method.  

 

6.2. Weighted Simultaneous Iterative Reconstruction Technique (W-SIRT) 

with Gaussian dataset 
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As shown in Figure 7, using Dataset I the W-SIRT method gives similar recon-

struction to that given by the traditional SIRT (Figure 6), which seems to be slight-

ly better; however, there is only a negligible difference in the model distances. 
 

 

Figure 7. Tomographic W-SIRT inversion of Dataset I (model distance: 0.0227) 

 

6.3. Simultaneous Iterative Reconstruction Technique with non-Gaussian 

dataset 

The SIRT method produces a relatively distorted image in the case of Dataset II, 

containing outliers. This is demonstrated in Figure 8. 
 

 

Figure 8. The tomographic SIRT inversion of Dataset II (model distance: 0.0635) 

As can be seen, the SIRT method is also very sensitive to the non-Gaussian nature 

of the noise, though it is better than CG with the non-Gaussian dataset (the model 
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distance for CG with non-Gaussian data was 0.250). In spite of this fact, the recon-

struction in Figure 8 is not acceptable. 

 

6.4. Weighted Simultaneous Iterative Reconstruction Technique (W-SIRT) 

with non-Gaussian dataset 

If we use the W-SIRT method for reconstructing Dataset II, we obtain the velocity 

distribution shown in Figure 9. It can be seen that the algorithm using Cauchy-

Steiner weights is highly resistant to outlier data and gives a good reconstruction 

result. 
 

 

Figure 9. The tomographic reconstruction of Dataset II by the W-SIRT method 

(model distance: 0.0242) 

 

The model distance is equal to 0.0242, which is nearly the same as when the SIRT 

method was applied on the Gaussian dataset, where the model distance was 0.026. 

Of course, SIRT with the Gaussian dataset should give a better result than W-SIRT 

with the non-Gaussian dataset. Investigations with outlier data proved that the W-

SIRT algorithm is computationally noise resistant and computationally economic. 
 

 

7. CONCLUSIONS 

The proposed tomography algorithms are tested for a medium-size tomography ex-

ample using synthetic travel time data. It is proved that, compared to their traditional 

versions, the outlier sensitivity of the generalized tomography methods is sufficiently 

reduced. Compared to the traditional CG algorithm the new W-CGRAD algorithm is 

more robust and resistant to outliers. The SIRT method was also modified by using 
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Cauchy-Steiner weights and it was proved that, compared to its original version, 

the W-SIRT method is less sensitive to outlier data. 
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