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ABSTRACT 

We suggest a statistical method for the simultaneous processing of 

electric, nuclear and sonic logging data using a robust iteratively 

reweighted factor analysis. After giving a first estimate by Jöreskog’s 

approximate method, we refine the factor loadings and factor scores 

jointly in an iterative procedure, during which the deviation between 

the measured and calculated data is weighted in proportion to its 

magnitude for giving an outlier-free solution. We show a strong 

nonlinear relation between the first factor and shale volume of multi-

mineral hydrocarbon formations. We test the noise rejection capability 

of the new statistical procedure by making synthetic modeling 

experiments. The iteratively reweighted factor analysis of simulated 

well-logging data including high amount of noise gives the well log of 

shale volume purified from large errors. Case studies from Hungary 

and the USA show that the results of factor analysis are consistent 

with that of independent deterministic modeling and core data. The 

statistical workflow can be effectively used for the processing of not 

normally distributed and extremely noisy well-logging data sets to 

evaluate the shale content and derived petrophysical properties more 

accurately in reservoir rocks. 

INTRODUCTION 
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In order to improve the efficiency of modern hydrocarbon 

exploration, sophisticated and robust geophysical data processing 

methods are being currently developed. In well log analysis, 

multivariate statistical approaches such as factor analysis seem to be a 

powerful tool in the evaluation of hydrocarbon reservoirs. Factor 

analysis is generally applied to reduce the dimensionality of 

multivariate statistical problems (Lawley and Maxwell, 1962). 

Additionally, in geosciences, it allows the exploration of latent 

variables dependent upon lithological characteristics and petrophysical 

properties of rocks not directly measurable by geophysical 

instruments. This capacity has been recently utilized in mineral 

exploration (da Silva Pereira et al., 2010; Qian et al., 2011; Merdith 

and Müller, 2015), applied geochemistry (Sun et al., 2009; Asadi et 

al., 2014; Mongelli et al., 2014) and hydrogeological studies (Charfi et 

al., 2013; Derby et al., 2013; Szabó, 2015; Krogulec and Zabłocki, 

2015). The idea of applying factor analysis for the interpretation of 

wireline logs dates back to the 1980’s. Buoro and Silva (1994) 

published a factor analysis-based technique for studying the ambiguity 

in the inversion of well-logging data. By detecting the most 

ambiguous parameters, they increased the stability and uniqueness of 

the inverse problem. Goncalves et al. (1995) presented the statistical 

method as an effective pre-processing tool for lithofacies 

identification and classification. Factor analysis was first applied to 
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estimate the shaliness of clastic formations by Szabó (2011). Shale 

volume as a key parameter in formation evaluation was related to the 

first factor by regression analysis. The exponential connection 

between the above variables has proved to be valid in several wells in 

Hungary and the USA (Szabó and Dobróka, 2013). Asfahani (2014) 

successfully applied the same technique to lithology identification in a 

basaltic area of Southern Syria. Seth et al. (2015) estimated the shale 

volume of siliciclastic and diatomic sediments of the Bering Sea. 

Factor analysis was applied to direct-push logs for water saturation 

estimation in shallow formations and simulation of neutron-porosity 

data to missing depth intervals (Szabó et al., 2012). Dry density of 

soils as an important geotechnical parameter was also derived by 

factor analysis for 2D case by Szabó (2012). Factor analysis was 

recently applied to the lithologic characterization of Paleozoic 

heterogeneous shale gas sediments (Wawrzyniak-Guz et al., 2016).  

The quality of estimated parameters is highly dependent on the 

level and distribution of measurement noise. Thence, statistical 

method-based interpretation techniques should pay attention to the 

proper handling of data uncertainty. The asymmetry of the distribution 

of data noise or the presence of outliers, caused by the logging 

instruments or caverns and other borehole irregularities, may have 

great impact on the accuracy of the estimation results. One can easily 

exclude outliers from the analysis by removing them from the data set. 
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However, it is not always recommendable, because they may carry 

useful information, e.g. cycle skipping in acoustic logging is 

indicative of pore-filling gas or fractures, or anomalous well log 

readings may be linked to thin layers or rare minerals. Outliers 

associated to lithological/petrophysical variations are favorable to be 

weighted in accordance with their relative importance in the 

interpretation procedure. In factor analysis, the observed variables are 

developed as a linear combination of new statistical variables called 

factors, which explain the variance of the observed information in 

different amounts. The classical method of Bartlett (1937) based on 

the hypothesis of linearity gives a fast and optimal solution for 

Gaussian distributed measurement data. For other types of 

distributions, this procedure is rather sensitive to data errors and 

outliers. Although, in practice, the maximum likelihood method has 

been found to be highly efficient against the departures from 

normality (Jöreskog, 2007), several attempts have been made for the 

robustification of factor analysis. Croux et al. (1999) solved the 

problem of robust factor analysis with a regression technique using the 

criterion of least absolute deviations, which was especially useful for 

dealing with missing and outlying data. Pison et al. (2003) suggested a 

robust estimation of the data covariance matrix and a subsequent 

application of the maximum likelihood method for extracting factors. 

This technique has been successfully applied for compositional data 
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analysis by Filzmoser et al. (2009), and Hoseinpoor and Aryafar 

(2014). Luttinen et al. (2012) modelled the data noise using Student’s 

t-distribution and evaluated the posterior probability density function 

by Bayesian approximate methods to introduce a new probabilistic 

model for robust factor analysis. In this study, we offer a different 

approach for the improvement of factor analysis using an iterative 

reweighting process adapted from geophysical inverse theory. 

In well-logging practice, the physical quantities are observed with 

different accuracies. Therefore, inversion methods normally minimize 

a weighted norm of the deviation between the observed and predicted 

data normalized by the standard deviation of data (Mayer and Sibbit, 

1980). Because of the propagation of errors, data variances can also be 

employed to derive the estimation errors of model parameters (Menke, 

2012). Analogously to inverse problems, in factor analysis, it is of 

high importance to distinguish the data by their uncertainty. The 

traditional methods of factor analysis generally apply weighting on the 

specific variances, representing the parts of the total variance of the 

observed data not explained by the common factors, but do not take 

account of the accuracy of a given datum. In the paper, we suggest an 

improved algorithm of factor analysis, which performs an automatic 

weighting process using the prediction errors (i.e. distance between 

the observed and calculated data) for estimating the factor scores more 

accurately. Similarly to inversion techniques based on automatic 
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weighting (Drahos, 2008; Gyulai et al., 2014), the newly developed 

method called Iteratively Reweighted Factor Analysis (IRFA) updates 

the factor scores and loadings in an iterative procedure, while it 

effectively reduces the misfit between the observations and 

predictions. The proper use of Cauchy weights assures a high noise 

rejection capability of the procedure and its resistance against outliers. 

By using the IRFA method, we derive a more accurate regression 

relation between the first factor, which explains the major part of data 

variance, and shale volume of geological formations. In the paper, an 

IRFA-based statistical approach is presented to calculate the 

distribution of shale volume along a borehole. We numerically test the 

performance of the IRFA method, which is compared to traditional 

(non-iterative) factor analysis using simulated and observed well logs 

and core data. 

THEORETICAL OVERVIEW 

General model of factor analysis 

Physical quantities observed in boreholes are simultaneously 

processed by factor analysis to derive statistical variables called 

factors. In extracting the factors, the measured data are first scaled to 

zero mean and unit standard deviation. All suitable input data are 

collected in a matrix 
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where nkd  is the standardized data measured in the n-th depth with the 

k-th logging instrument (N is the number of sampled depths and K is 

the number of applied sondes). We decompose the data matrix in 

equation 1 according to the model of factor analysis 

                                              EFLD  T
,                                      (2) 

where F is the N-by-M matrix of factor scores, L is the K-by-M matrix 

factor loadings and E is the N-by-K matrix of residuals (T denotes the 

operator of matrix transpose). The number of factors (M) is less than 

that of the input variables (K). Factor scores of the l-th extracted 

statistical variable are represented in the l-th column of the matrix F 

(l=1,2,..,M). The first factor (given by l=1) explains the largest part of 

variance of the observed data. Subsequent factors represent 

decreasingly lower contributions of the total variance. The degree of 

correlation between the various types of data and factors are given in 

matrix L. The range of factor loadings is between −1 and 1, which is 

similar to the domain of the Pearson’s correlation coefficient. The 

larger the absolute value of factor loadings, the stronger the 
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correlation between the factors and observed data. Since the factors 

are assumed to be linearly independent ( IFF  T1N , where I is the 

unity matrix), the correlation (or covariance) matrix of standardized 

data is 

                                     ΨLLDDR   TT1N ,                             (3) 

where Ψ  is the K-by-K matrix of specific variances representing the 

portion of data variances not explained by the factors given in matrix 

F. Among different approaches, the factor loadings can be 

simultaneously estimated with the specific variances by optimizing the 

following objective function (Jöreskog, 2007) 

                               mintr
2T  ΨLLRΨ)(L,Γ .                      (4) 

The factor loadings are usually rotated for a more efficient physical 

interpretation of factors. When all factor loadings are close to 0 or 1, 

the factors can be easily interpreted. In other cases, an orthogonal 

transformation is applied to simplify the diversified structure of factor 

loadings, which allows the recalculation of factors to obtain ones that 

are more spectacular. In this study, the varimax algorithm suggested 

by Kaiser (1958) is used, which specifies few data types to which the 

factors strongly correlate.  
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We assume that L and Ψ  are known and observed data are 

normally distributed. The factors can be determined by the maximum 

likelihood method. An unbiased estimate of the factor scores can be 

given (Bartlett, 1937) 

                                      T1T11TT DΨLLΨLF  .                             (5) 

The optimal number of factors can be set by statistical tests (Bartlett 

1950), a model selection-based approach (Preacher et al., 2013) or a 

non-iterative method presented in the next section. Equation 3 shows 

that the common factors are responsible only for a part of data 

correlations. Singular value decomposition of the reduced correlation 

matrix Tˆ LLΨRR   can be used to quantify the proportions of 

the total variance of observed data explained by the factors. We 

decompose the above correlation matrix as 
Tˆ USVR  , where U and 

V are K-by-K orthogonal matrices and S is the K-by-K diagonal 

matrix of singular values arranged in descending order. The total 

variance of data is given by the trace of matrix S, while the relative 

percentage of variance explained by the l-th factor is 

                                         (%)100
)(tr

2 
S

ll
l

S
σ .                                  (6)                                               
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The well logs of rotated factors can be directly applied to extract 

hidden petrophysical information on reservoir rocks from the well-

logging data set. 

Non-iterative approximate solution 

The appearance of matrix E in equation 2 causes some 

inconvenience in solving the problem of factor analysis. In principal 

component analysis, the matrix of residuals is neglected and a set of 

linear equations is solved uniquely. If matrix E is treated as unknown, 

an appropriate estimate to the specific variances Ψ  must be given. 

Jöreskog (2007) suggested a non-iterative approximate algorithm for 

calculating the factor loadings and specific variances. Jöreskog’s 

method gives an objective estimate also to the number of extracted 

factors, which makes it practical for geophysical applications. 

Correlation matrix R in equation 3 can be developed with the factor 

loadings and specific variances, the diagonal elements of which is 

composed of the variances of standardized measured variables. The 

diagonal elements of the reduced correlation matrix R̂  are called 

communalities, which account for the proportions of data variance 

explained by the common factors. The matrix of specific variances is 

related to the K-by-K matrix of communalities as ΨIH 2 . If the 

communalities 
2

kkh  are far less than unity, the factors contain only 

poor information on the observed data. 
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The counterpart of the k-th communality is 122 1  kkkkkk rhu , 

where rkk is the k-th diagonal element of the inverse of correlation 

matrix R. Jöreskog (1963) suggested the approximate formula 

kkkk ru 2
, where the parameter θ was specified as less than unity. 

This formulation gives the following model of factor analysis 

                                        11T diag
 ΣLLΣ θ ,                               (7) 

where the covariance matrix  appears as an implicit function of the 

factor loadings and parameter θ. By analogy with equation 3, the 

second term of equation 7 approximates the matrix of specific 

variances. The modified matrices     2/112/11  diagdiag   ΣΣΣΣ  and 

  LΣL
2/11diag    give 

                                           ILLΣ ** θ T
,                                     (8) 

where the second term represents the simplified matrix of specific 

variances. Let the sample covariance matrix C be an estimate of 

matrix . Similarly to the previous case, the matrix 

    211211 diagdiag
//   CCCC is also a consistent estimate of matrix 

*. Jöreskog (2007) gave an estimate to the matrix of factor loadings 

using the eigenvalues and eigenvectors of matrix C* 

                     UIΓΩCL
21211diag

/

MM

/
θ

 ,                      (9) 
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where ΓM denotes the diagonal matrix of the first M number of sorted 

eigenvalues, ΩM is the matrix of the first M number of eigenvectors 

(given in its columns) and U is an arbitrarily chosen M-by-M 

orthogonal matrix. This algorithm suggests that we should choose the 

smallest number of factors for satisfying the inequality 

                  1
1

 



K2M1M λλλMKθ  .                (10) 

The factor scores can be derived by equation 5. The above solution is 

very fast to compute and does not require the calculation of 

communalities, but the procedure is relatively noise sensitive 

especially if we have outliers in the analyzed data set. 

Iteratively reweighted factor analysis 

In order to improve the efficiency of traditional factor analysis, 

which solves a least squares problem using the specific variances as 

weights in equation 5, we suggest the use of a more sophisticated 

weighting process implemented in the data space. In the workflow of 

the Iteratively Reweighted Factor Analysis procedure, the factor 

loadings and scores calculated by equations 5 and 9 serve as starting 

values for the iterative procedure. We estimate the new values of 

factor scores by minimizing the weighted norm of prediction errors 

(i.e. deviation between the observed data and theoretical data 

calculated by the actual factor model) in each iteration step. The IRFA 
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method gradually refines the well logs of factor scores by rejecting the 

measurement noise with high efficiency. 

In order to avoid the use of multidimensional arrays, we 

reformulate the model of factor analysis defined in equation 2 

                                           efLd 
~

,                                        (11) 

where d denotes the NK column vector of standardized (observed) 

data, L
~

 is the NK-by-NM matrix of factor loadings, f is the NM 

column vector of factor scores and e is the NK length vector of 

prediction errors ( fL
~

 gives the vector of calculated data). Consider 

the NK-by-NK diagonal weighting matrix W, the non-zero elements of 

which is chosen in relation with the standard deviation of measured 

data. The weights quantify the relative importance of each data to the 

solution. In geoscience problems, the Cauchy weights can be used for 

giving an outlier-resistant solution (Tarantola, 1987) 

                                              
22

2

k

kk
eε

ε
W


 ,                                     (12) 

where 2ε  is a properly set scale parameter, the value of which can be 

chosen by trial-and-error technique or automatically by the most 

frequent value method (Steiner, 1991). A feasibility study and 

application of the most frequent value method in hydrogeological 

modeling can be found in Szűcs et al. (2006). According to equation 
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12, the larger the distance between the observed and calculated data, 

the less weight is given to the relevant data. In the IRFA procedure, 

the vector of factor scores f is calculated by the minimization of the 

weighted norm of prediction errors  

                                 min
~~ TT  fLdWfLdWee ,                    (13) 

where matrix W contains also the factor scores. The nonlinear 

weighted least squares problem is solved in the framework of the 

Iteratively Reweighted Least Squares (IRLS) method (Scales and 

Gersztenkorn, 1988). In the first step of the procedure, we substitute 

0

~~
LL   into equation 13, where 0

~
L  is the matrix of Jöreskog’s factor 

loadings. It results in the set of normal equations  

                                          WdLfLWL
T

010

T

0

~~~
 ,                               (14) 

the solution of which is equivalent with that of the minimization of the 

weighted norm of specific variances in equation 5. In the solution of 

equation 14, the weight matrix W is recalculated by the IRLS 

technique through requisite number of inner-loop iterations. In the 

next step, the vector of updated factor scores 1f  is used as a constant 

vector f


 to improve the factor loadings in 1

~
L . By doing this, we 

neglect the non-Gaussian nature of the data and solve the problem of 

the Damped Least Squares method (Marquardt, 1959) 
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                                min
~~~~

1

T

1

2

1

T

1  LLfLdfLd α


,  (15) 

where  is the damping constant. Since equation 15 is unweighted, we 

can return to the original matrix formulation used in equation 2 and 

write 

                          min)) 1

T

1

2T

1

TT

1  LLLF(DLF(D α


.             (16) 

The new values of factor loadings are given by the well-known 

formula 

                                     DFIFF(L
T


12TT

1 ) α .              (17) 

Following the iterative procedure, matrix T

1L  (and so 
1

~
L ) can be 

inserted into equation 14 to calculate the new values of factor scores 

in 2f  and so on, until we find the optimal values of the prediction 

errors. In the q-th step of the iteration procedure, the following set of 

equations is solved for updating the matrix of factor loadings 
T

qL  and 

the vector of factor scores qf  

                                 
  



















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WdLLWLf

DFIF(FL

T
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1

1

T
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1

12

1

T

1

T

~~~

)

qqqq

qqqq α
.                       (18) 

At end of the IRFA procedure, a sorting method is applied to the 

elements of vector f to represent the factors as depth dependent 
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quantities. In this study, we refer to the Jöreskog’s method combined 

with the Bartlett’s solution as Traditional Factor Analysis (TFA), and 

we make a comparison between the TFA and IRFA methods using 

synthetic and real well-logging data. 

Shale volume estimation using factor analysis 

The amount of shaliness is classically determined from the natural 

gamma-ray intensity log. Larionov (1969) suggested an empirical 

relation between the gamma-ray log reading and shale volume for 

both unconsolidated and compacted rocks by assuming that 

radioactive minerals other than clays are not present in the rock 

matrix. This method can be improved by using the spectral gamma-

ray logs, which allow the identification of clay type and estimation of 

their relative amounts (Serra, 1984). Shale volume can be determined 

more reliably by the simultaneous processing of suitable logs. In the 

evaluation of hydrocarbon reservoirs, the following well logs sensitive 

to shale volume are normally utilized such as natural gamma-ray 

intensity (GR in API), spontaneous potential (SP in mV), bulk density 

(ρb in g/cm3), neutron-porosity (ΦN in v/v), sonic traveltime (Δt in 

μs/ft), photoelectric absorption index (Pe in barn/electron) and deep 

resistivity (Rd in ohm-m). For instance, Kamel and Mabrouk (2003) 

used neutron-porosity, density and acoustic traveltime data for a more 

accurate determination of formation shaliness by the presence of 
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radioactive materials other than shale. Several advanced formation 

evaluation methods are based on statistical principles such as inverse 

modeling or multivariate statistical procedures. Szabó (2011) showed 

a strong connection between the first factor and shale volume of 

sedimentary sequences using oilfield well logs. Szabó and Dobróka 

(2013) proposed the following regression function for Hungarian and 

North-American hydrocarbon reservoirs 

                                      caeV
Fb

sh  1 ,                                     (19) 

where Vsh (v/v) denotes the shale volume, F1 is the first factor and a, 

b, c are site-specific constants. It was shown that equation 19 gave a 

consistent solution for near Gaussian or moderately skewed data 

distributions. However, in case of larger asymmetry of input data there 

is a need to use a more robust algorithm of factor analysis. Equation 

19 also describes the connection between the first factor and shale 

volume of unconsolidated North-Hungarian aquifers (Szabó et al., 

2014). The hydraulic conductivity of aquifers with primary and 

secondary porosity as a related quantity to shale volume was 

successfully correlated to the relevant factor by Szabó (2015). 

SYNTHETIC AND FIELD RESULTS 

Forward modeling 
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The aim of synthetic modeling is to quantify the accuracy of the 

IRFA method. Well-logging data simulated using an exactly known 

petrophysical model are processed to test the noise sensitivity of the 

IRFA procedure by measuring the strength of correlation between the 

exact and estimated shale volume logs. For calculating the well logs in 

complex reservoirs, we apply the following set of probe response 

equations (Alberty and Hashmy, 1984) 
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                                    1
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n

i
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where Φ (v/v) denotes the fractional volume of shale-free pore space, 

Vma,i (v/v) is the relative volume of the i-th matrix constituent, n is the 

total number of mineral components, Sx0 (v/v) and Sw (v/v) are water 

saturation in the invaded and uninvaded zone, respectively. The zone 

parameters appearing in equations 2026 represent the physical 

properties of mud filtrate (mf), hydrocarbon (h), shale (sh) and the 

rock matrix (ma), which are treated as constant in the forward 

problem. The denotations and actual values of zone parameters can be 

found in section Nomenclature and Table 1. The zone properties can 

be estimated from crossplot techniques, drilling information, 

laboratory measurements (Jarzyna et al., 2016) or some of them 

alternatively by interval inversion (Dobróka and Szabó, 2011). Shale 

volume can also be derived from the material balance formula given 

in equation 27, which is a constraint equation in solving the well-

logging inverse problem. In complex reservoirs, more than one type of 

minerals form the rock matrix, the volumes of which can be 

determined from the joint inversion of well logs, e.g. by an interval 

inversion procedure (Dobróka et al., 2012). 
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Test using synthetic data 

We test the IRFA method using the well logs calculated by 

equations 2026 for the petrophysical model plotted in Figure 1. The 

matrix of the gas-bearing formation is composed of quartz and calcite, 

while the pore space is occupied by water, irreducible (Shirr=1Sx0) 

and movable hydrocarbon (Shm=Sx0Sw). In synthetic tests, we assume 

the model parameters to be exactly known quantities. The average and 

standard deviation calculated for the well logs of porosity is 0.150.05 

v/v, for water saturation in invaded zone is 0.920.08 v/v, for water 

saturation in virgin zone is 0.690.27 v/v, for shale volume is 

0.240.25 v/v, for quartz volume is 0.420.16 v/v and for calcite 

volume is 0.190.07 v/v. The average skewness (0.1) and kurtosis 

(0.84) of model parameters show slightly flatter and asymmetric data 

distribution compared to Gaussian.  

Factor logs are estimated separately by the TFA and IRFA 

procedures, which are directly correlated to the known values of shale 

volume. In Well-1, we simulate the measurement by adding different 

amount of noise to the synthetic data. We contaminate each datum by 

a number randomly chosen from Gaussian distribution with zero mean 

and standard deviation proportional to the required noise level. In the 

first test, synthetic well logs including 5 % Gaussian noise serves as 

input for factor analysis. The histogram of the random noise added to 
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the standardized data is shown in Figure 2. At first, we show that the 

IRFA method gives proper results for normally distributed data 

(which is a condition for the use of TFA). The average of Pearson’s 

correlation coefficients of the observed variables is 0.55, which shows 

moderate correlation between the well logs (Table 2). The kurtosis of 

the sample is 0.12, which also confirms the Gaussian statistics. The 

result of the TFA method is given by equations 5 and 9, which is used 

as an initial model for the IRFA method. We set the scale parameter to 

2=2 for calculating the 1757-by-1757 weight matrix in equation 12. 

The weight coefficients as a function of the difference between the 

measured and calculated (standardized) data (vector e in equation 11) 

are shown in Figure 2. By using equation 18, we progressively 

improve the estimates of the loadings and scores of two uncorrelated 

factors (suggested by equation 10) over 10 iterations. The magnitude 

of weight coefficients continuously decreases as the procedure 

progresses. We use the smallest possible value for regularization 

parameter , which ensures a stable iterative process and does not 

disturb considerably the physical solution, i.e. the values of factor 

loadings. The damping factor, the initial value of which is =1, is 

decreased by 90 % of its actual value in each iteration. In Table 3, the 

factor loadings inform about the correlation relations between the 

factors and quasi-measured variables. The largest impact on the first 

factor is put by shale-sensitive logs like SP, GR and ΦN, while the 



23 

 

second factor is influenced considerably by seismic properties such as 

ρb and Δt. The use of equation 6 shows that the first factor explains the 

91 % of the total variance of the well-logging data, which correlates 

highly with the fraction of shale (Figure 2). Despite of the high value 

of the Pearson’s correlation coefficient (0.98), the functional relation 

is slightly nonlinear (Figure 2). The regression coefficients of equation 

19 estimated with 95 % confidence bounds are a=1.120.29, 

b=0.200.05, c=–0.900.28. The input logs and the results of IRFA 

are in Figure 3. Shale volumes estimated by traditional (Vsh,TFA) and 

iteratively weighted factor analysis (Vsh,IRFA) show good agreement 

with their theoretical values. The procedure of IRFA gives a slightly 

smoother solution. The root-mean-square error (RMS) between the 

exact and TFA-derived shale volume logs is 7.1 %, while it is 4.8 % 

for the IRFA method. The relative percentage decrease is 32 %, which 

shows better result for the iterative approach in case of normally 

distributed data. 

In the next step, the effect of outliers is tested. For simulating a 

non-Gaussian data distribution, six times higher amount of noise is 

randomly added to the 1/10 part of the Gaussian distributed data. The 

RMS (normalized) distance between the noisy and noiseless data is 7 

%. The average correlation (0.36) shows weaker correlation between 

the well logs than in the previous case, and the kurtosis (5.49) 

indicates a leptokurtic data distribution including outliers. We conduct 
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statistical tests of normality for proving the non-Gaussian distribution 

of the input data. In Figure 4, the ordinate axes are scaled by the 

standard Gaussian distribution function. The deviation of data points 

from the straight-line shows that the (quasi-) measured variables are 

not normally distributed. Two factors are extracted from the data set 

by using 2=1 and =1. The maximal number of iterations is 10. The 

components of vector e and the Cauchy weights calculated in the first 

iteration are plotted in Figure 5. The first 251 elements in the main 

diagonal of matrix W represent the weights of the GR log, the second 

251 elements corresponds to the SP log, and so on. We normalize each 

weighting coefficient by the sum of the weights of the given well log 

type. Thus, the maximal weight put on small prediction errors for each 

well log is different. The estimated scores of the two factors are cross-

plotted in Figure 6, which shows that the TFA method is quite 

sensitive to outliers, while the IRFA procedure is outlier-resistant. The 

first factor explains the 94 % part of variance of the observations. The 

loadings of the same factor are consistent to those of the purely 

Gaussian case: L(SP)=0.97, L(GR)=0.98, L(ρ
b

)=0.05, L(Φ
N

)=0.89, 

L(Δt)=0.18, L(Rd)=0.79, L(Pe)=0.58. The first factor is still strongly 

correlated to SP, GR, ΦN and Rd logs, but the relatively noisy ρb, Δt 

and Pe logs have negligible impact on it. One can make a comparison 

between the factor vs. shale volume relations estimated by the TFA 

and IRFA procedures in Figure 7. The Pearson’s correlation 
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coefficient between the exact values of shale volume and the first 

factor is 0.95 for TFA, while it is 0.98 for IRFA. We conclude that 

IRFA gives a more accurate solution with better correlation. The 

coefficients of the exponential function obtained by IRFA are 

a=0.840.17, b=0.270.05, c=–0.630.16. The noisy (input) well logs 

and the results of factor analysis are plotted in Figure 8. Factor and 

shale volume logs calculated by the TFA procedure include erroneous 

peaks mostly in the interval of 0–10 m. In contrast with the traditional 

method, the IRFA procedure gives a smoother estimate to the factor 

variables and the derived shale volume log. The RMS misfit between 

the exact and TFA-based shale volume log is 7.2 %, while that for the 

IRFA method is 4.4 %. It is concluded that the IRFA method can be 

advantageously used to process data sets of non-Gaussian distributions 

and extreme noises. The synthetic modeling experiments show that the 

factors can be completely purified from outliers as well as significant 

improvement can be made in the estimation accuracy of shale volume 

by using the robust algorithm. 

Test using real well logs 

We chose a well-logging data set originated from the Powder River 

Basin Province, Wyoming, USA, from the literature (Anna, 2009). In 

the processed depth of Well-2, the Minnelusa formation of Paleozoic 

age is composed of shales as potential source rocks and sandy 
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dolomites as low porosity hydrocarbon reservoirs. We apply the IRFA 

method to analyze the spontaneous potential (SP), natural gamma-ray 

intensity (GR), acoustic traveltime (Δt) and deep resistivity (Rd) logs 

measured with a sampling interval of one foot. The average 

correlation of the well logs is 0.42 and the data are nearly Gaussian 

distributed (skewness is 0.33 and kurtosis is 0.77). We extract one 

factor from four observed well logs. The calculation of factor loadings 

is made in a stable procedure by =0 in equation 18. The maximal 

number of iterations is 10 and the scale parameter 2 is 0.3. At the end 

of the IRFA procedure the factor loadings are L(Δt)=0.09, L(Rd)=0.17, 

L(SP)=0.72, L(GR)=0.79. The first factor is mainly sensitive to 

lithologic effects, which was demonstrated in the synthetic modeling 

experiments, too. We calculate the reference values of shale volume 

by the Larionov formula suggested for older than Tertiary rocks 

(Larionov, 1969). Figure 9 shows a strong relation between the first 

factor and shale volume in Well-2, which is indicated by the 

correlation coefficient of 0.98. The magnitude and sign of the 

regression coefficients are consistent with those of the synthetic 

modeling tests. The estimated values of the constants in equation 19 

are a=0.570.12, b=0.330.06, c=0.340.12. In the upper part of the 

section, the GR log shows the presence of shales (Figure 10). Around 

the depth of 10,300 feet, high resistivities indicate a hard dolomite, 

below which sandstones and sandy dolomites are deposited. The first 
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factor and shale volume are plotted in the last two tracks. The upper 

part of the section shows that IRFA properly resolves thin shale 

layers. The RMS distance between the shale volumes estimated by the 

Larionov formula (Vsh,LAR) and the IRFA method is 4.9 %. 

Test using core data 

The investigated borehole (Well-3) was originally drilled for 

hydrocarbon exploration in Baktalórántháza, Great Hungarian Plain, 

North-East-Hungary. We process an interval of 80 m, where high 

porosity (unconsolidated) shaly sands of Pleistocene age were 

deposited. In the rock matrix we find carbonate cement, which 

amounts to 1.59.6 % according to core tests. In the processed depth, 

the reservoirs are fully freshwater saturated (Sx0=Sw=1). We utilize the 

self-potential (SP), natural gamma-ray intensity (GR), caliper (CAL), 

gamma-gamma intensity (), neutron-(thermic) neutron (NN) and 

shallow resistivity (Rs) logs. Shale volume is available from the grain-

size analysis of 29 core samples, and estimated by the Larionov 

formula used in younger than Tertiary rocks (Larionov, 1969). The 

porosity of the formation is calculated from the combination of  

and NN logs. The observed variables practically follow Gaussian 

distribution (the skewness and kurtosis are nearly 0, the average 

correlation is 0.42), thus, we show the results only of the IRFA 

procedure. We extract one factor from the six well logs by the same 
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parameter settings as in Well-2. The first factor is mainly sensitive to 

the lithologic logs as the factor loadings show: L(Rs)=0.40, L(SP)=0.49, 

L(GR)=0.96, L()=0.44, L(NN)=0.34, L(CAL)=0.13. The factor scores 

are directly correlated to core measurements. Figure 9 shows the local 

regression relation between the first factor and shale volume in Well-

3. The correlation coefficient (0.92) indicates a strong relation 

between the above quantities. The coefficients of equation 19 are close 

to those of Well-2. The estimated values of constants and their 

standard deviations are a=0.430.19, b=0.360.13, c=0.170.19. 

The result of IRFA is shown in Figure 11. The GR image shows the 

aquifers with light grey color, while shales are represented by darker 

colors. The cyclic variation of sediments is well observable in the SP 

and Rs logs. The IRFA-derived shale volume log fits well to those of 

calculated by the Larionov formula and core information. The RMS 

error between the shale volumes estimated by the Larionov formula 

and core measurements (Vsh,CORE) is 4.1 %, while that of computed 

between the IRFA method and laboratory measurements is only 3.1 

%. 

DISCUSSION 

As opposed to classical methods using a single log for the 

interpretation, we utilize all wireline logs sensitive to shaliness for 

factor analysis to give a more reliable estimate to shale volume. The 
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validity of equation 19 has been verified both by simulated and real 

well-logging data. The results of field experiments show that shale 

volume estimated by the IRFA method agrees properly with that of 

independent well log analysis and laboratory methods (Figure 12). 

The factor analysis of synthetic data is useful also in setting the 

control parameters of the IRFA procedure. The choice of the scale 

parameter of weighting function can be made automatically or by 

preliminary tests. With the decrease of , bigger deviations contribute 

less to the solution. Another important question is the setting of the 

number of extracted factors. The optimal number of factors can be 

classically determined by statistical tests. Jöreskog (2007) gives a 

more practical solution to this problem by applying equation 10. For 

studying the effect of the number of factors, we generate a data set 

composed of GR, SP, ρb, ΦN, Δt, Rd, Pe logs contaminated with 5 % 

Gaussian noise. In Table 4, parameter   is less than and closest to 1, if 

the number of factors is two. (Similarly, in our previous synthetic tests 

we extracted two factors in the optimal case.) In this experiment, we 

study the IRFA procedure by maximum five factors. Table 4 shows 

that the increase of the number of factors improves the fit between the 

measured and calculated data (decreases the L2 norm of prediction 

error), but the factor loadings related to the lithologic logs (e.g. GR) 

and the relative variance explained by the first factor significantly 

decreases. It is obvious that the formulation of IRFA allows the 
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quality check of the results of factor analysis in data space. In factor 

analysis, the measured variables are transformed into less number of 

factors, which implies the loss of some observed information. Figure 

13 shows the misfit between the calculated (standardized) and quasi-

measured resistivity logs beside different number of factors. It must be 

mentioned that computed well log types with higher factor loadings 

such as GR, SP and ΦN show even better fit to observations than the 

resistivity log for the cases of less extracted factors. By increasing the 

number of factors, we neglect relatively smaller amount of 

information as well as the data misfit reduces. For more number of 

factors, the singular values for the rest of the factors usually equal to 

zero and we obtain zero factor loadings. In case of high number of 

factors, the information is shared more greatly by the factors and the 

correlation between the first factor and shale volume is reduced. In 

order to concentrate the information on the lithology, we are advised 

to use less number of factors. For the specification of the number of 

factor logs, we suggest the use of equation 10 on the condition that we 

have high-valued factor loadings related to determinative well logs 

and a tolerable level of data misfit.    

CONCLUSIONS 

We present an improved data processing approach to make a more 

robust determination of shale volume using the factor analysis of well 
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logs. The test results, presented in this paper, confirm the feasibility of 

the IRFA method, which gives optimal results not only for normally 

distributed well-logging data. The weighting process of IRFA 

efficiently reduces the harmful impact of extreme noises caused by the 

measurement tools or other environmental effects, which can be a 

useful tool, e.g. in the re-processing of old well logs. The IRFA 

method insensitive to outliers allows a more reliable estimation of 

shale content variation along the borehole. According to our 

experience, at least 30−40 % relative improvement of estimation 

accuracy can be achieved compared to traditional factor analysis 

depending on the noise level of the well logs. For data sets including 

higher number of outliers than in the presented study, even better 

quality improvement can be reached. It must be mentioned that the 

caliper log is strongly connected to lithologic characteristics of 

formations, but we cannot describe these connections explicitly. Thus, 

caliper log cannot be used in inversion procedures. In accordance with 

inverse modeling, there is nothing to prevent using the caliper log in 

factor analysis, which may give further information for a better 

interpretation of shaly formations. Moreover, the IRFA method allows 

the quality check of the results in data space. As a conclusion, we 

must take a trade-off between the value of prediction error and the 

amount of information explained by the extracted factors.  
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We currently study the possibility of using global optimization 

methods such as Genetic Algorithms in solving the problem of factor 

analysis to improve the fit between the measured and predicted well 

logs. The essence of the method is the use of a consistent exponential 

relation between the first factor and shaliness of reservoirs rocks. 

Shale volume and derived quantities such as effective porosity, 

permeability, water and hydrocarbon saturations can be extracted 

reliably from the factor scores by the IRFA procedure, which may 

improve the results of reservoir modeling. This statistical method can 

be easily further developed to crosswell applications. The 

simultaneous processing of well-logging data sets acquired from 

several neighboring boreholes gives multi-dimensional sections of the 

factor variables and petrophysical properties. In this framework, the 

usage of a large statistical sample makes significant improvement in 

the estimation accuracy of the derived reservoir parameter. The 

presented statistical methodology can be employed as a useful data 

processing tool in oilfield applications, the basic idea of which may be 

applied fruitfully also in the study of unconventional (especially shale 

gas) reservoirs. 

NOMENCLATURE 

a, b, c = Regression coefficients of factor vs. shale content  

relation 
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C = Sample covariance matrix of standardized data 

Ccor      = Mud-filtrate correction coefficient in neutron response 

equation 

d = Vector of standardized well-logging data in IRFA  

                        procedure 

D = Standardized data matrix as input for factor analysis 

e = Vector of data prediction errors in IRFA procedure 

E = Matrix of residuals in the model of factor analysis 

f = Vector of factor scores in IRFA procedure 

F = Matrix of factor scores 

F1 = Score of the first statistical factor 

H2 = Matrix of communalities 

K = Number of log types involved in factor analysis    

K*    =  Temperature factor used for calculation of SP (mV) 

L = Matrix of factor loadings 
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m = Cementation exponent in resistivity response equation 

M = Number of extracted statistical factors 

n = Number of mineral types in material balance equation 

n* = Saturation exponent in resistivity response equation 

N = Number of investigated depths along the borehole 

Pe = Photoelectric absorption index (barn/electron) 

R = Correlation matrix of standardized data 

R̂  = Reduced correlation matrix calculated from the factor  

loadings 

Rd = Resistivity measured by deep penetration tool (ohm-m) 

Rmf = Resistivity of mud-filtrate (ohm-m)  

Rsh = Resistivity of shale (ohm-m) 

Rw = Resistivity of pore-water (ohm-m) 

Shf = Residual hydrocarbon coefficient in neutron response 

equation 
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Shirr = Irreducible hydrocarbon saturation (v/v) 

Shm = Movable hydrocarbon saturation (v/v) 

Sw = Water saturation in uninvaded zone (v/v) 

Sx0 = Water saturation in invaded zone (v/v) 

t = Tortuosity factor in resistivity response equation 

Uh = Volumetric photoelectric absorption index of 

hydrocarbon (barn/cm3) 

Uma = Volumetric photoelectric absorption index of rock  

matrix (barn/cm3) 

Umf = Volumetric photoelectric absorption index of mud- 

filtrate (barn/cm3) 

Ush = Volumetric photoelectric absorption index of shale  

(barn/cm3) 

Vlm = Fractional volume of limestone (v/v) 

Vma = Fractional volume of rock matrix (v/v) 
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Vsd = Fractional volume of sandstone (v/v) 

Vsh = Volume of shale relative to total rock volume (v/v) 

W = Diagonal matrix of Cauchy weight coefficients 

 = Damping factor used for calculating factor loadings 

0 = Mud-filtrate coefficient in density response equation 

 = Scale parameter of Cauchy weight function  

Φ = Shale-free porosity (v/v) 

ΦN = Neutron-porosity (v/v)  

ΦN,ma = Neutron-porosity of rock matrix (v/v) 

ΦN,mf = Neutron-porosity of mud-filtrate (v/v) 

ΦN,sh = Neutron-porosity of shale (v/v) 

 = Matrix of specific variances 

  = Jöreskog’s constant used to give the number of factors 

ρb = Bulk density (g/cm3) 

ρh = Density of hydrocarbon (g/cm3) 
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ρma = Density of rock matrix (g/cm3) 

ρmf = Density of mud-filtrate (g/cm3) 

ρsh = Density of shale (g/cm3) 

2
l = Relative variance explained by the l-th factor 

 = Matrix of eigenvalues of sample covariance matrix 

 = Matrix of eigenvectors of sample covariance matrix 

 = Covariance matrix of standardized data 

t = Acoustic interval-time (s/ft) 

th = Acoustic interval-time of hydrocarbon (s/ft) 

tma = Acoustic interval-time of rock matrix (s/ft) 

tmf = Acoustic interval-time of mud-filtrate (s/ft) 

tsh = Acoustic interval-time of shale (s/ft) 

- = Gamma-gamma logging data (cpm) 

CAL = Observed caliper of borehole (inch) 

GR = Natural gamma-ray intensity (API) 
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GRma = Natural gamma-ray intensity of rock matrix (API) 

GRsh = Natural gamma-ray intensity of shale (API) 

IRFA = Method of Iteratively Reweighted Factor Analysis 

NN = Neutron-neutron logging data (cpm)  

RMS = Root mean square error (deviation between well logs) 

SP = Spontaneous potential (mV) 

SPsh = Spontaneous potential of shale (mV) 

TFA = Traditional algorithm of factor analysis 
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 LIST OF FIGURE CAPTIONS 

Figure 1. Exactly known petrophysical model and calculated well logs 

in Well-1. Model parameters are shale-free porosity (Φ), water 

saturation in the invaded and uninvaded zone (Sx0 and Sw), shale 

volume (Vsh), sand volume (Vsd), limestone volume (Vlm), irreducible 

and movable hydrocarbon saturation (Shirr and Shm). Noiseless 
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calculated logs are natural gamma-ray intensity (GR), spontaneous 

potential (SP), photoelectric absorption index (Pe), bulk density (ρb), 

neutron-porosity (ΦN), sonic traveltime (Δt) and deep resistivity (Rd). 

Figure 2. Gaussian noise added to standardized synthetic well logs in 

Well-1 (top left panel). Regression relation between the first factor 

extracted from well logs contaminated with 5 % Gaussian noise and 

the exact values of shale volume (top right panel). Cauchy weights 

calculated automatically for each well log in the IRFA procedure vs. 

data prediction errors (bottom panel). Input well logs are natural 

gamma-ray intensity (GR), spontaneous potential (SP), bulk density 

(ρb), neutron-porosity (ΦN), sonic traveltime (Δt), deep resistivity (Rd) 

and photoelectric absorption index (Pe). 

Figure 3. Result of factor analysis in Well-1. Input well logs 

contaminated with 5 % Gaussian noise are natural gamma-ray 

intensity (GR), spontaneous potential (SP), photoelectric absorption 

index (Pe), bulk density (ρb), neutron-porosity (ΦN), sonic traveltime 

(Δt) and deep resistivity (Rd). Well logs of the first and second factors 

extracted by traditional factor analysis (F1,TFA and F2,TFA) and 

iteratively reweighted factor analysis (F1,IRFA and F2,IRFA). Well logs of 

exactly known shale volume (Vsh,exact) and shale volume estimated by 

traditional factor analysis (Vsh,TFA) and iteratively reweighted factor 

analysis (Vsh,IRFA). 
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Figure 4. Normal probability plots of well logs simulated in Well-1. 

Frequency of standardized Gaussian distributed statistical variable 

(solid line). Frequency of synthetic well-logging data contaminated by 

Gaussian noise and outliers (circle symbol). Well logs are natural 

gamma-ray intensity (GR), spontaneous potential (SP), bulk density 

(ρb), neutron-porosity (ΦN), sonic traveltime (Δt), deep resistivity (Rd) 

and photoelectric absorption index (Pe). 

Figure 5. Cauchy weights used in the first iteration step of the IRFA 

procedure in Well-1. Prediction error as deviation between the 

observed and calculated data (top panel). Cauchy weight coefficients 

are inversely proportional to the deviation between measured and 

calculated well-logging data and are of different maximal values for 

each log type (bottom panel). 

Figure 6. Crossplots of the two statistical factors estimated in Well-1 

by the TFA and IRFA procedures, respectively. The result of the TFA 

procedure is highly sensitive to outliers (left panel), while they are 

effectively rejected using the IRFA method (right panel). 

Figure 7. Regression relation between the first factor extracted from 

noisy synthetic well logs including outliers and the exact values of 

shale volume in Well-1. Regression analysis is highly influenced by 

extreme values of factors estimated by the TFA procedure (left panel), 

while the IRFA method is resistant against outliers (right panel). The 
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Pearson’s correlation coefficient between the shale volume and first 

factor is 0.95 for TFA, while it is 0.98 for IRFA. 

Figure 8. Result of factor analysis in Well-1. Well logs including 

Gaussian noise and outliers are natural gamma-ray intensity (GR), 

spontaneous potential (SP), photoelectric absorption index (Pe), bulk 

density (ρb), neutron-porosity (ΦN), sonic traveltime (Δt) and deep 

resistivity (Rd). Well logs of the first and second factors extracted by 

traditional factor analysis (F1,TFA and F2,TFA) and iteratively reweighted 

factor analysis (F1,IRFA and F2,IRFA). Well logs of exactly known shale 

volume (Vsh,exact) and shale volume estimated by traditional factor 

analysis (Vsh,TFA) and iteratively reweighted factor analysis (Vsh,IRFA). 

Figure 9. Regression relation between the first factor extracted from 

real well-logging data and shale volume. Nonlinear (exponential) 

relation between the first factor and shale volume calculated 

deterministically by the Larionov method in Well-2 (left panel). 

Regression connection between the first factor and shale volume 

obtained from core analysis in Well-3 (right panel). 

Figure 10. Result of factor analysis in Well-2. The investigated 

formation is a North-American shaly-sandy carbonate of 

Pennsylvanian age. Input well logs are natural gamma-ray intensity 

(GR), spontaneous potential (SP), acoustic traveltime (Δt) and deep 

resistivity (Rd). The first factor log is extracted by traditional factor 



50 

 

analysis (F1,TFA) and iteratively reweighted factor analysis (F1,IRFA). 

Shale volume is estimated by traditional factor analysis (Vsh,TFA), 

iteratively reweighted factor analysis (Vsh,IRFA) and the Larionov 

method (Vsh,LAR). 

Figure 11. Result of factor analysis in Well-3. The unconsolidated 

formation is a Hungarian shaly-sandy (carbonate cemented) sequence 

of Pleistocene age. Observed well logs are natural gamma-ray 

intensity (GR), caliper (CAL), spontaneous potential (SP), gamma-

gamma intensity (), neutron-neutron (NN) and shallow resistivity 

(Rs). The parameters of the compositional analysis are shale-free 

porosity (Φ), shale volume (Vsh) and volume of rock matrix (Vma). The 

first factor log is extracted by iteratively reweighted factor analysis 

(F1,IRFA). Shale volume is estimated by iteratively reweighted factor 

analysis (Vsh,IRFA), the Larionov method (Vsh,LAR) and core analysis 

(Vsh,CORE). 

Figure 12. Regression relation between shale volumes derived by 

different methods using real well logs. Linear connection between 

shale volumes estimated separately by the IRFA and Larionov method 

in Well-2 (left panel). Linear connection between shale volumes 

estimated separately by the IRFA method and core analysis in Well-3 

(right panel). 
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Figure 13. Results of factor analyses given by different number of 

factors (M) in Well-1. Deviation between the deep resistivity (Rd) logs 

calculated from the estimated factors (dashed line) and the quasi-

measured resistivity logs (solid line) characterizes the misfit in data 

space at the end of the IRFA procedure. 

 


