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ABSTRACT 

 

An improved iteratively re-weighted factor analysis procedure is presented to interpret engineering 

geophysical sounding logs in shallow unsaturated sediments. We simultaneously process cone 

resistance, electric resistivity and nuclear data acquired by direct-push tools to give robust estimates of 

factor variables and water content in unconsolidated heterogeneous formations. The statistical 

procedure is based on the iterative re-weighting of the deviations between the measured and calculated 

data using the Most Frequent Value method famous for its robustness and high statistical efficiency. 

The iterative approach improves the result of factor analysis for not normally distributed data and 

extremely noisy measurements. By detecting a strong regression relation between one of the extracted 

factors and the fractional volume of water, we establish an independent method for water content 

estimation along the penetration hole. We verify the estimated values of water volume by using a 

highly overdetermined quality checked interval inversion procedure. The multidimensional extension 

of the statistical method allows the estimation of water content distribution along both the vertical and 

horizontal coordinates. Numerical tests using engineering geophysical sounding data measured in a 

Hungarian loessy-sandy formation demonstrate the feasibility of the Most Frequent Value based factor 

analysis, which can be efficiently used for a more reliable hydrogeophysical characterization of the 

unsaturated zone. 
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1 INTRODUCTION 

 

Cone penetration tests (CPT) can be effectively used for the in-situ investigation of shallow sediments 

such as clay, silt, sand, gravel and other loose formations. In soft rocks, the penetration of the tube can 

reach some tens of meters, which allows the classification of soil types and estimation of their 

petrophysical properties. Lunne, Robertson and Powell (1997) provide an extensive overview of CPT 

instruments and tests including geotechnical applications. Traditional CPT tools used for measuring 

geotechnical parameters of soils are usually complemented by geophysical instruments for a more 

reliable site investigation. Analogously to well-logging methods, several physical parameters are 

observed in penetration holes with an advantage that only a steel tube isolates the probe from the soil, 

there is no invasion of drilling fluid into the formation, and the measured data are transferred to the 

surface unit through the rods pushed into the ground. Schulmeister et al. (2003) show the downhole 

electric resistivity method as an efficient tool in stratigraphic characterization of unconsolidated 

sediments, differentiation between sand and clay intervals, estimation of shale content and hydraulic 

conductivity underlying the process of groundwater flow and solute transport. In the same study, 

hydrostratigraphic facies mapping was done by the lateral correlation of electric logs. Direct-push 

techniques including the state-of-the-art methods and hydrogeophysical applications are detailed in 

Kirsch (2006).  

A Hungarian direct-push technology called Engineering Geophysical Sounding (EGS) allows 

the measurement not only of soil resistivity, but cone resistance, sleeve friction, natural gamma-ray 

intensity, neutron-porosity and bulk density (Fejes and Jósa 1990). The EGS measurement technique 

illustrated in Fig. 1 can be efficiently applied in solving environmental, hydrogeological and civil 

engineering problems. Several studies have shown its successful application in soil mechanical studies 

and treatment, environmental risk assessment, planning recultivation programs, surveying of dams, 

studying of water resources, landfill characterization, mapping groundwater contamination, mining 

damage assessment and delineation of hydrocarbon contamination. Draskovits and Fejes (1994) 

presented two case studies in which shallow water-bearing formations and their overburden were 

investigated by the combination of surface geoelectric and EGS methods. For gravel terraces, the 



combination of direct current resistivity maps and EGS logs allowed the characterization of the 

hydrogeological value of groundwater formations and the protecting capacity of the overburden. The 

interpretation results can be improved by using different surface geoelectric arrays (Szalai et al. 2013; 

Szalai et al. 2015). The EGS method is recently used for solving hydrocarbon contamination problems 

using special instruments sensitive to the effects of induced polarization and UV fluorescence. For a 

more detailed interpretation of induced polarization data, a series expansion based inversion 

methodology was introduced by Turai and Dobróka (2011) to which several case studies were added 

by Turai (2011).   

In practice, EGS data processing mostly incorporates deterministic methods adapted from 

oilfield well-log analysis (Tillman et al. 2008; Nyári et al. 2010). Drahos and Galsa (2007) developed 

a finite difference method to calculate the response of the electric tool for inversion applications. 

Drahos (2005) developed a method for volumetric compositional analysis of EGS logs based on 

weighted least-squares inversion. As a new alternative, Szabó, Dobróka and Drahos (2012) suggested 

a multivariate statistical approach for the estimation of water saturation in shallow formations. The 

soil moisture in unsaturated formations is an important parameter in hydrogeological studies, to which 

intensive research is made by involving innovative technologies. One example is the application of the 

nuclear magnetic resonance (NMR) measurement in shallow penetration holes. The NMR tool gives 

additional information on the fractional volumes of mobile and bound water, the results of which are 

consistent with neutron measurements (Walsh et al. 2013). 

Multivariate statistical methods are widely used in geophysical data processing, especially in the 

simultaneous analysis of well logs. Factor analysis is applicable to reduce the dimensionality of 

statistical problems and extract not directly measurable information from multivariate data sets 

(Lawley and Maxwell 1962). The statistical factors as new variables extracted from the observed data 

can be correlated to petrophysical properties of rocks. Grana, Dvorkin and Cibin (2011) applied the 

method of factor analysis to effective stress prediction from seismic attributes, which gave a new 

possibility for estimating the abnormal pore-pressure of reservoir rocks. Principal Component 

Analysis (PCA) as a practical approximation method for solving the problem of factor analysis has 

been widely used in formation evaluation. Puskarczyk, Jarzyna and Porebski (2015) used the PCA to 



reduce well-logging data sets and differentiate thin layers of sands and mudstones in middle Miocene 

gas-reservoirs in Poland. Niculescu, Andrei and Ciuperca (2016) applied the same technique to 

separate lithostratigraphic units and delineate gas-reservoirs in the Moldavian Platform. A quantitative 

use of factor analysis was suggested by Szabó (2011) to calculate the shale volume directly from the 

factor scores in hydrocarbon-bearing clastic rocks. Asfahani (2014) applied this approach successfully 

in the basaltic area of Southern Syria. The hydraulic conductivity of groundwater formations was 

explored by factor analysis of hydrogeophysical logs (Szabó 2015), the results of which was validated 

by core measurements and pumping tests. Szabó (2016) solved the problem of factor analysis by using 

a float-encoded genetic algorithm-based inversion approach, which gave the best fit between the 

measured and calculated logs in estimating the factors and related petrophysical properties of 

hydrocarbon reservoirs. 

Jöreskog (2007) suggested a non-iterative factor analysis technique, which finds the solution 

fast regardless of the scaling of observed data. The maximum-likelihood method frequently used for 

solving the problem of factor analysis simplifies to the least-squares method for Gaussian distributed 

input variables. The drawback of the Jöreskog’s approximate algorithm is that it gives optimal results 

only for Gaussian distributed data. In consequence, it works as a relatively noise-sensitive data 

processing procedure in the field. Since EGS data rarely follow Gaussian statistics, the classical 

method of factor analysis must be improved to give a robust solution. We adapted the algorithm of 

Iteratively Reweighted Factor Analysis (IRFA) suggested by Szabó and Dobróka (2017), which has 

proved to be a useful tool in the evaluation of multimineral hydrocarbon reservoirs. The IRFA method 

updates the factor scores by iteratively re-weighting the difference between the measured and 

calculated data. The statistical method uses a weighting process, which is analogous to ground 

geophysical inversion applications using the same strategy (Drahos 2008; Gyulai, Baracza and Szabó 

2014). In this study, we combine the IRFA technique with the Most Frequent Value (MFV) method 

suggested by Steiner (1991). By the MFV method, optimal weights can be automatically calculated for 

the observed data to improve the result of statistical estimation. Dobróka et al. (1991) used the Steiner 

weights given by the MFV method for the establishment of a joint inversion algorithm to interpret 

seismic and geoelectric data collected in underground mine. The same weights were used in the 



development of robust seismic tomography methods (Dobróka and Szegedi 2014) and a series-

expansion based Fourier transformation method that showed high noise rejection capability (Szegedi 

and Dobróka 2014). In Gyulai et al. (2017), the Steiner weights were used for the automatic separation 

of dip- and strike direction of apparent resistivity data, measured over a 3D thermal water structure as 

part of a 2.5D geoelectric inversion procedure. Other geophysical and hydrogeological applications of 

the MFV method can be found in Steiner (1997) and Szűcs, Civan and Virág (2006).  

We employ the MFV method for the factor analysis of penetration logs to generate optimal 

weights for each component of the deviation vector. By this manner, the factor logs can be calculated 

more accurately, and abrupt changes caused by outliers included in the data set may be prevented. We 

call the further developed iterative factor analysis procedure as MFV-IRFA. We calculate the water 

content of shallow sediments by making use of the strong correlation between the first statistical factor 

and water volume. The statistical results are compared to those of a joint inversion method called 

interval inversion, which was originally developed for the processing of oilfield well logs (Dobróka et 

al. 2016). The highly overdetermined interval inversion procedure gives significantly more accurate 

estimation results than the local (depth-by-depth) inversion methods. We perform regression analysis 

to determine the functional relation between the first factor estimated by the MFV-IRFA method and 

water volume, which allows the calculation of water saturation distribution in the borehole or between 

neighbouring boreholes. The noise rejection capability and other advantages of the MFV-IRFA 

method is shown in a Hungarian case study. 

 

2 THEORY AND METHODS 

 

2.1 Forward modelling  

 

The petrophysical parameters of subsoils are normally extracted from EGS data using well-log 

analysis techniques originally developed for deep boreholes (Serra 1984). A deterministic approach for 

estimating the 3D resistivity distribution from the parameters of EGS measurements was suggested by 



Nyári et al. (2010), in which the Archie’s (1942) and De Witte (1955) models were compared. Nuclear 

data collected by EGS tools provide information about the density, water content and porosity, which 

can be used in resistivity calculations for modelling the transport of water and contaminants. EGS data 

processing techniques also incorporate inversion-based and multivariate statistical methods. For the 

evaluation of volumetric parameters in unsaturated sediments, Drahos (2005) introduced a local 

inversion technique using a weighted least squares optimization algorithm. By following this idea, we 

establish the petrophysical model with the assumption that the rock matrix is composed of coarse and 

fine grain components and the pore-space is occupied by freshwater and gas (normally air). In the 

framework of local inversion, the fractional volumes of water (Vw), gas (Vg), clay (Vcl) and sand (Vs) 

with their estimation errors are estimated at each depth along the penetration hole. From the inversion 

results, one can derive the hydraulic conductivity (Nyári et al. 2010) and other geotechnical 

parameters, e.g., dry density (Szabó 2012). The above volumetric parameters are extracted by using 

the following EGS data typically measured in penetration tests: natural gamma-ray intensity, GR 

(cpm), bulk density, b (g/cm3), neutron-porosity, N (V/V) and resistivity, R (ohm-m). The classical 

CPT logs such as cone resistance RCPT (MPa) cannot be used in inverse modelling, because there is 

not any response function to connect the measured data with the petrophysical model. The RCPT 

informs about the drillability of soils, while GR is sensitive to clay content and lithology, b and N 

respond to porosity and R is used for water saturation estimation. As opposed to inverse modelling, all 

of the above log types can be used as input for factor analysis.  

 We calculate the EGS logs in the forward modelling process by assuming a known 

petrophysical model. The following response functions can be used to relate the observed quantities 

with the model parameters for unsaturated clastic sediments (Drahos 2005)    
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ssclclwwb VVV   ,                                                                                                                  (2) 
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where the physical constants of rock constituents and pore-filling fluids are indicated with cl (clay), s 

(sand), w (water), g (gas). Symbols m, a, n represent the Archie’s (textural) parameters such as 

cementation exponent, tortuosity factor and saturation exponent, respectively. The detailed list of 

functional constants are in Table 1. In equations (2)(3), the density and neutron-porosity of gas are 

set to zero. Response function (4) applicable to calculate the resistivity was suggested by De Witte 

(1955). In fact, the fluid and matrix properties are not always constant as they may vary in the 

heterogeneous sediment. However, these zone parameters are treated as constant to avoid an 

ambiguous underdetermined inverse problem. In this study, the local inverse problem has three 

unknowns (Vw, Vcl, Vs) and four data types (GR, b, N, R). The gas saturation is derived from the 

inversion results by using the material balance equation Vg=1VwVclVs. The inverse problem is 

overdetermined, which has a unique solution. On the other hand, rock samples can be collected easily 

from the shallow holes and several physical parameters can be a priori given using reliable laboratory 

information. In this study, we use equations (1)–(4) for solving a highly overdetermined inverse 

problem called interval inversion to give an estimate to the petrophysical model, which is used to 

validate the results of factor analysis. 

 

2.2 Robust method of factor analysis  

 

Factor analysis offers a new alternative for the evaluation of unsaturated sediments. We extract the 

water volume as an important parameter of the applied petrophysical model by the IRFA method 

suggested by Szabó and Dobróka (2017). In this study, the IRFA method is improved by using the 

Steiner weights to reduce the noise sensitivity of the procedure and give a robust solution. In the first 

step, we organize the standardized EGS data into an N-by-K matrix (D), where N is the total number of 

sampled depths and K is the number of applied direct-push tools. Factor analysis reduces the K 



dimensional problem to a lower dimensional one by extracting M number of new variables (factors) 

from the data set. The model of factor analysis is      

EFLD  T
,                 (5) 

where F is the N-by-M matrix of factor scores, LT is the M-by-K transpose matrix of factor loadings 

and E is the matrix of residuals. In equation (5), the observed variables are developed as a linear 

combination of the statistical factors. Factor loadings practically quantify the strength of correlation 

between the log types and factors. The scores in a given column of matrix F build up the well log of 

the relevant factor. For instance, the first column defines the first factor explaining the largest part of 

variance of the observed data. If the factors are linearly independent, the covariance matrix of 

observed data can be expressed with the factor loadings 

ΨLLDDΣ   TT1N ,                                        (6) 

where Ψ  is the K-by-K matrix of specific variances representing the portion of data variances not 

explained by the common factors. In several cases, the matrix of specific variances is set to be zero 

and the PCA is used to calculate the factors. If the specific variances are known, factor loadings can be 

estimated by solving an eigenvalue problem. For the lack of specific variances, only approximation 

can be made and the factor loadings are simultaneously estimated with the specific variances using the 

maximum likelihood method. In our methodology, any of the above approaches can be used for giving 

an initial estimate to the factors, which are then refined by the IRFA method. We apply the non-

iterative approach of Jöreskog (2007), which gives a quick solution and an objective estimate to the 

number of factors. 

Jöreskog’s method gives optimal results for Gaussian distributed data. Since EGS data sets 

rarely follow normal distribution, we apply the IRFA procedure. Equation (5) is properly modified as 

efLd 
~

,                                                                                                                                            (7) 

where d denotes the KN-element column vector of standardized observed data, L
~

 is the NK-by-NM 

matrix of factor loadings, f is the MN-length column vector of factor scores, e is the KN-element 

column vector of residuals. The actual values of factor scores and loadings are refined in an iterative 



algorithm (Szabó and Dobróka 2017), which uses the combination of the damped least squares and the 

weighted least squares methods (Menke 1984) 

    DFIFFL 1)T(121)()1T(T   qqqq  ,                                                                                               (8) 

  WdLLWLf 1)T(11)(1)T()( ~~~  qqqq
,                                                                                                    (9) 

where  is a properly chosen damping factor and q is the index running through the number of 

iterations. The recursive process is based on the iterative re-weighting of deviation between the 

measured (d) and calculated data ( fL
~

). In each iteration, the larger the distance is between the 

measured and predicted data, the less weight is given to the relevant datum. Szabó and Dobróka 

(2017) applied the Cauchy weights for solving the IRFA problem. The scale parameter of the Cauchy 

weight function is to be arbitrary chosen, which may have considerable impact on the solution.  

We improve the Cauchy-IRFA method by using a fully automated weighting procedure for 

optimizing the values of weight coefficients. The Most Frequent Value (MFV) method is known as a 

robust estimator with high statistical efficiency (Steiner 1991). The MFV is defined as the weighted 

average of the N-element statistical sample 
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where xi denotes the i-th data and  is the dihesion given as the scale parameter of the weight function 

represented by the fraction in square brackets. It is noticeable that the dihesion controls the relative 

importance of the data in the weighting process. If the value of  is high, all data get approximately the 

same weight. For small values of , only data in the near vicinity of the MFV affect the estimation 

considerably. Since it appears on both sides of equation (10), the MFV is improved by an iterative 

algorithm. In the q-th iteration, the dihesion is calculated analogously to equation (A-6) using the 

actual value of MFV 



 
  

  

2/1

1
2 2 

1

2

1

1
22

1

2

1

2

1

MFV

1

MFV

MFV
3









































N

i
qiq

N

i
qiq

qi

q

xε

xε

x

ε .                                   (11) 

By using the updated value of , the MFV is refined by equation (10). The development of 

convergence usually requires some tens of iterations. The iteration process runs until a stop criterion 

(e.g., the difference between the old and new value of MFV is under a given threshold or maximum 

iteration number) is met. Compared to Cauchy weighting the advantage of the MFV method is that the 

scale parameter  is automatically calculated during the iterative procedure, which allows the finding 

of optimal weight coefficients for the actual data set. In the IRFA procedure, we choose the weight 

function given in equation (9) analogously to equation (10). The elements of the NK-by-NK diagonal 

weight matrix are proportional to the deviations between the (standardized) measured and calculated 

EGS data 
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The modified iterative factor analysis procedure is named as MFV-IRFA, in which optimal weights 

are calculated automatically for each component of the deviation vector to estimate the factors more 

accurately.  

Statistical factors are generally rotated for a more efficient physical interpretation. The reduced 

covariance matrix of observed data 
*T*

LLΣ
*  can be computed in several ways using a K-by-K 

orthogonal matrix V, where LVL
*  . Orthogonal transformation performed on the factor loadings, as 

geometric rotation, results in an equivalent solution to the factors. In this study, the varimax algorithm 

suggested by Kaiser (1958) is used to simplify the structure of factor loadings by maximizing the sum 

of the variances of the squared factor loadings. By this method, any given factor is influenced by only 

a few observed variables, while the remaining variables have near-zero loadings on the same factor. 

As a result, there will be few log types to which the resultant factor strongly correlates. The first 

factor, which explains the largest part of variance of the observed data, highly correlates to the water 



content of shallow formations (Szabó et al. 2012). We assume that the relation between the relevant 

factor and water volume as the product of water saturation and porosity is also strong. To test this 

relation, the water volume derived independently from the interval inversion of EGS logs is correlated 

to the first factor estimated by the MFV-IRFA procedure. 

 

2.3 Interval inversion method 

 

In practice, fast inversion methods are normally used to predict the petrophysical parameters using a 

depth-by-depth approach (Drahos 2005). As having barely more EGS data than unknown model 

parameters at a given depth, we solve a set of marginally overdetermined inverse problems sensitive to 

data noises and limited in estimation accuracy. Dobróka et al. (2016) suggested an interval inversion 

approach to improve the quality of inversion results. The interval inversion method is used to process 

the data set over a longer depth interval to predict the vertical distributions of petrophysical parameters 

in a joint inversion procedure. The depth-dependent model parameters are discretized using series 

expansion and the inverse problem is solved for much smaller number of expansion coefficients than 

data. The resulting highly overdetermined inverse problem leads to significantly more accurate 

solution than local inversion methods and, if necessary, gives an estimate to the layer-thicknesses and 

zone parameters within the inversion procedure (Dobróka and Szabó 2012).  

 We approximate the depth-dependent model parameters, such as fractional volumes of clay, 

sand and water, by the following series expansion 
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where ml is the l-th petrophysical parameter, Bj is the j-th expansion coefficient, Pj is the j-th degree 

Legendre polynomial and J(l) is the number of expansion coefficients suitably chosen for describing 

the l-th model parameter. Legendre polynomials in equation (13) are used as basis function, which are 

known quantities depending only on the depth coordinates. The orthonormal polynomials can be 

favourably used in inversion applications for estimating slightly correlated model parameters. We 

collect the EGS data of different types measured from an arbitrary depth interval in the column vector 



d(obs). To calculate the theoretical logs to the same interval, we solve the forward problem by using 

equations (1)–(4). The objective function of the inverse problem is 

min
2

2

2
2

2
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where e* denotes the deviation vector including the normalized differences between the observed and 

calculated data, B is the vector of expansion coefficients and  is a regularization parameter necessary 

for the numerical stabilization of the inversion procedure. As indicated by the above formulation, the 

inverse problem is solved for the series expansion coefficients 

)(obsg
dGB

 ,                                                         (15) 

where G-g is the generalized inverse matrix of the damped least squares method (Marquardt 1959). 

The vertical distribution of petrophysical parameters can be derived directly from the inversion results 

using equation (13). According to Menke (1984), the covariance matrix of the model parameters 

estimated by a linearized inversion method is directly proportional to the data covariance matrix 

including the variances of observed data. The accuracy of volumetric parameters derived from 

equation (13) requires the propagation of errors taken into consideration. At first the covariance matrix 

of series expansion coefficients are calculated by Menke’s formula, which is then related to the 

covariance matrix of the petrophysical parameters (Dobróka et al. 2016). The quality-checked 

inversion result, including the water content, serves as a reference model for regression analysis, in 

which the statistical factors are correlated to the petrophysical parameters of unsaturated formations. 

 

3 APPLIED STATISTICAL WORKFLOW 

 

We perform the formation evaluation by using the workflow given in Fig. 2. At the beginning, we 

have K number of measured logs as input, which are simultaneously processed to derive less number 

of statistical variables. The number of factors are specified by the Jöreskog’s algorithm. The initial 

values of factor loadings and scores estimated by the same algorithm are simultaneously refined in the 



MFV-IRFA procedure. The weight function related to the difference between the observed and 

predicted logs is automatically re-calculated using the MFV method in each iteration. Technically, the 

value of dihesion is updated in an inner loop of iterations during the MFV-IRFA procedure, while the 

factor scores and loadings are estimated with the actual weights using equations (8)–(9). The output of 

the MFV-IRFA procedure is a set of factor logs showing the vertical variation of factor scores along 

the penetration hole. The factors may carry information on not directly measurable petrophysical 

properties of rocks. To extract this information from the EGS data set, we correlate factors to different 

petrophysical parameters given from independent sources, e.g., core data, pumping tests or 

independent well-log-analysis techniques like the interval inversion procedure. Partial regression 

analyses may reveal the connection between the factors and petrophysical properties. In this study, we 

demonstrate the strong connection between the first factor and water content, which has been tested in 

different areas in Hungary. Based on the consistent relation between the two quantities, we suggest the 

use of a regression formula to extract the water volume directly from the EGS data set. Water content 

estimated by the MFV-IRFA method can be used as an initial model for inverse modelling, which can 

be refined by the repeated use of interval inversion and factor analysis. On the other hand, by treating 

the estimated petrophysical quantities as known parameter, we can increase the overdetermination 

(data-to-unknowns ratio) of the inverse problem as well as the estimation accuracy of other inversion 

unknowns. 

 

4 RESULTS AND INTERPRETATION 

 

We use the MFV-IRFA method for the processing of EGS data originated from Bátaapáti, South West 

Hungary. In the test area, detailed ground geophysical surveys were previously made for establishing a 

nuclear waste repository beneath the sedimentary formations (Vértesy et al. 2004). The shallow 

structure is composed of a loessy-sandy sequence deposited on a partially weathered granite basement. 

The thickness of the loess cover has an average thickness of 50 m and the water level is mainly at the 

top of the granite. Engineering geophysical soundings were carried out in the upper 20–25 m of the 

unconsolidated, partially water-saturated formation. In this study, we extract the statistical factors 



using EGS data measured in single holes (sections 4.1–4.2) and several neighbouring holes (section 

4.3). Then, the first factor is related to water content estimated independently from the interval 

inversion of the EGS logs. 

 

4.1 One-dimensional application 

 

We first simultaneously process the GR, b, N, R logs using the interval inversion method to estimate 

the vertical distribution of water, clay and sand volumes in Hole4. The air volume is calculated from 

the material balance equation. The input logs and their confidence intervals are plotted in Fig. 3. The 

accuracy of observed data is given after Drahos (2005). The standard deviation of the EGS data are 

assumed as 1=0.22 kcpm, 2=0.07 g/cm3, 3=0.04 V/V, 4=2.1 ohm-m. We have totally 944 data by 

a sampling distance of 0.1 m. We discretize the model parameters (Vw, Vcl, Vs) using equation (13). 

The series expansion is performed for the whole length of Hole4, which allows the estimation of 

petrophysical parameters to the same interval. The degree of Legendre polynomials for all model 

parameters is set to 40, and the depth coordinates are properly scaled to the range of 1 and 1. The 

number of expansion coefficients is optimized by preliminary tests minimizing the correlation of 

model parameters (Dobróka et al. 2016). By doing this, a trade-off must be taken between the vertical 

resolution and the stability of the inversion procedure. The total number of expansion coefficients is 

123, which are estimated by the interval inversion procedure run over 15 iterations. The data-to-

unknown ratio is approximately seven, which is significantly higher than that of the local inverse 

problem (where it is 4/3). We set the initial values of the zeroth-order expansion coefficients to 0.5 for 

clay volume and 0.2 for water and sand volume, respectively. The expansion coefficients of higher-

order Legendre polynomials are equal to zero. Theoretical EGS logs are calculated for the entire 

logging interval in each iteration by equations (1)–(4). We find that the inversion procedure is still 

stable without using regularization, i.e., 0 is used in equation (14). In the first step, the data distance 

(Dd) as the average root-mean-square error (RMSE) between the observed and predicted data is 36 %, 

which decreases down to 6.9 % at the end of the inversion procedure. The estimation error of the 



zeroth-order series expansion coefficients is 1–2 %. The average of correlation coefficients between 

the inversion unknowns is 0.08, which refers to practically uncorrelated model parameters. This 

remarkable value indicates a stable inversion procedure. The distribution of volumetric parameters are 

derived from the estimated model vector using equation (13). The input logs and the results of interval 

inversion are plotted in Fig. 3. The estimation errors of volumetric parameters (5, 6, 7) are 2–6 

V/V, while the mean correlation between the volumetric parameters is approximately 0.48. Both 

quantities show stable and reliable inversion results. 

The vertical variation of factors is determined by the MFV-IRFA of the RCPT, GR, b, N, R 

logs. Two uncorrelated factors are calculated by the procedure. The initial values of factor loadings are 

given by the method of Jöreskog (2007), which are updated simultaneously with the factor loadings 

over 15 iterations. Singular value decomposition of the reduced covariance matrix 
T*

LLΣ   shows 

that the first factor explains 76 % part of the total variance, while the 24 % part of that is given by the 

second factor. The estimated factor loadings are listed in Table 2, which shows that the strongest 

correlation is between the first factor and EGS log types sensitive to water saturation (N and R).  

The main purpose of our study is to find correlation between the factors and petrophysical 

parameters of the shallow structure. The regression tests show a strong exponential relation between 

the first factor and water volume estimated by the interval inversion method (Fig. 4a), which is 

described by the empirical function 09.0e29.0
)11.0( 1 

F

wV . The linear connection between the 

water volumes given separately by factor analysis and interval inversion is also strong. Both methods 

shows consistent estimation results (Fig. 4b). The result of factor analysis and the soil composition 

estimated by interval inversion are illustrated in Fig. 5. The RMSE as a measure of misfit between the 

water volume logs estimated by the statistical and inversion methods is 1.45 %, which indicates a 

close agreement between the interpretation results. 

 

4.2 Application to data set with outliers 

 



The MFV-IRFA procedure is used for the processing of non-Gaussian distributed data. The 

measurements may be contaminated with outliers, for example, when we drill a hard formation, the 

probe readings sometimes lie an abnormal distance from those of other points. In this test, we process 

the RCPT, GR, b, N, R logs measured in Hole–12. The non-Gaussian nature of the data set is 

characterized by non-zero values of empirical kurtosis and skewness. The value of the former is 17, 

while that of the latter is 2. To test the outlier-sensitivity of factor analysis, we make a comparative 

study between the Jöreskog’s method, which we have chosen to call Traditional Factor Analysis 

(TFA), and the robust MFV-IRFA method. In the regression phase of the study, we use the inversion-

derived water content as reference value.   

We calculate two factors by using the TFA and MFV-IRFA methods, respectively. The result of 

the TFA procedure is used as an initial model for the MFV-IRFA procedure, in which the factor 

loadings and scores are updated jointly over 15 iterations. In each step of the iterative procedure, the 

Steiner weights in equations (9) and (12) are re-calculated in further 30 steps. In the inner loop of 

iterations, the dihesion is automatically decreased and changed differently for each EGS log (Fig. 6a). 

The value of  is continuously decreased with the number of iterations, which makes the big deviations 

contribute less to the solution. For a given value of , the larger the distance is between the measured 

and calculated data, the smaller the amplitude of the weight coefficient (Fig. 6b). The figure shows 

that the large deviations give a negligible contribution to the solution. The probability distribution 

function of the optimal weights given in the last iteration step are shown in Fig. 6c, while that of the 

prediction errors are in Fig. 6d. The MFV-IRFA procedure is convergent and stable. The development 

of convergence is shown in Fig. 7, where the relative distance between the measured and calculated 

data (and the weighting factors) gradually decreases with the number of iterations. At the end of the 

iterative procedure, the rotated loadings of the first factor is estimated as L(RCPT)= 0.01, L(GR)=0.17, 

L(
b
)=0.86, L(

N
)=0.73, L(R)=0.88. The first factor, which explains the 74 % part of the data variance, 

has still strong connection with the penetration logs highly sensitive to saturation. The noise rejection 

capability of TFA and MFV-IRFA methods can be compared in Fig. 8. The extreme values of factor 

scores in Fig. 8a show that the TFA method is unable to suppress the outliers in the calculation of 



factors. In contrast to the outlier-sensitive TFA procedure, the outliers are efficiently removed by the 

MFV-IRFA procedure (Fig. 8b), which shows the robustness of the iterative method. 

We correlate the first factor to water saturation calculated as the ratio of the inversion-derived 

water content and porosity. (We solve a set of local inverse problems using a weighted least squares 

technique, because the effect of outliers can be studied in more detail). The first factor versus water 

saturation relation is strong for both methods, with a difference that the MFV-IRFA solution is more 

accurate as it lacks for the outliers (Fig. 9b). Both regression functions follow the exponential model     

 


)( 1e
F

wS , the coefficients of which are close to each other. For the MFV-IRFA procedure, the 

regression coefficients are calculated at 95 % confidence level as =0.77±0.14, =0.22±0.04, 

=0.12±0.11. 

The results of the comparative study is summarized in Fig. 10. The well logs of the two factors 

are given in the fifth track. The factor logs estimated by the TFA method include erroneous peaks 

caused by the outliers (e.g., in the consolidated layer at the depth of around 24–27 m), while much 

smoother estimate to the factor variables are given by the MFV-IRFA procedure. Tracks 6–7 also 

show that the water saturation log derived by the TFA method contains abrupt changes in the places of 

outliers, while these peaks are completely absent when using the MFV-IRFA method. The RMSE 

measured between the results of factor analysis and local (weighted) inversion is 7.4 % for the TFA 

method, while it is 4.6 % for the MFV-IRFA procedure. They show a close agreement between the 

independent well-log-analysis results. It is also concluded that the application of MFV-IRFA method 

makes a significant improvement in the estimation accuracy of water saturation. 

The single borehole application of the MFV-IRFA method is studied also by synthetic 

modelling experiments. We calculate EGS logs from an exactly known petrophysical model (last track 

in Fig. 11) using equations (1)–(4). The water table in the clayey sand formation is found at the depth 

of around 7.5 m, under which the pore-space is fully saturated with fresh-water and the water volume 

changes only with porosity. By adding different amount of random noise to the synthetic data (5 % 

Gaussian and 5 % Gaussian plus eight times higher random noise added to every randomly chosen 

eighth data, respectively), we calculate two factors by the TFA and MFV-IRFA methods, respectively. 



In both tests, the absolute value of factor loadings of the neutron-porosity and resistivity logs is not 

smaller than 0.83. The results confirm the exponential relation between the first factor and the exactly 

known values of the water content. In Fig. 11, one can observe the good noise suppression capability 

of the MFV-IRFA method.    

 

4.3 Two-dimensional application 

 

We further develop the MFV-IRFA algorithm for multidimensional applications, which allows the 

simultaneous processing of EGS data acquired from several neighbouring drill-holes. Let d(h) denote 

the observed data vector, defined in equation (7), in the h-th hole (h=1,2,…,H). After gathering all data 

to a column vector, the model of factor analysis takes the form 
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where 
 h

L
~

 is the matrix of factor loadings and 
 h

f  is the vector of factor scores estimated along the 

h-th borehole. Since we have Nh number of depth points in the h-th hole, the total number of processed 

depths is HNNNN  21

*
. By applying the same number of probes in all holes, the size of 

the weight matrix in equation (12) modifies to KN*-by-KN*. In the multidimensional algorithm of 

MFV-IRFA, the matrix of factor loadings and the column vector of factor scores in equation (16) are 

analogously determined by equations (8)–(9). The CPU time of the modified procedure can be highly 

reduced by employing special algorithms developed for sparse matrices, e.g., by means of the 

MATLAB software package. The estimated factor scores are necessarily interpolated between the 

holes to derive the factor maps.  

We test the 2D MFV-IRFA procedure in twelve penetration holes drilled along a profile in 

Bátaapáti test site. The holes are located approximately 50 meters away from each other on the 

northwest-southeast oriented profile, the total length of which is 550 m. Penetration holes studied in 



sections 4.1–4.2 (Hole–4 and Hole–12) are located at the horizontal distances 150 m and 550 m along 

the survey line, respectively. We analyse the RCPT, GR, b, N, R logs, where the total number of 

processed data is 15,500. Two factors are calculated by the 2D MFV-FA procedure. The first factor 

explains the 72 % part of total variance of original data. The initial values of factor loadings estimated 

by the method of Jöreskog (2007) are updated simultaneously with the factor loadings over 20 

iterations. The Steiner weights are re-calculated separately for each log in further 50 iterations. The 

magnitude and sign of the rotated loadings of the first factor are consistent with the results of the one-

dimensional cases: L(RCPT)=0.08, L(GR)=0.03, L(
b

)=0.85, L(
N

)=0.77, L(R)=0.88. The second factor 

shows the highest correlation with the RCPT log. The first factor is strongly correlated to water 

saturation (Fig. 12a), where the functional relation is slightly exponential. Water content is linearly 

proportional to the same factor (Fig. 12b). Earlier studies showed that the first factor could be related 

also to some quantities measured by the EGS tools. Szabó et al. (2012) made an experiment to 

simulate the neutron log to unmeasured intervals using the results of factor analysis. These 

calculations were based on the high correlation between the first factor and the neutron log. It was 

experienced that these connections also existed when the relevant log was removed from the procedure 

of factor analysis. In this study, we find a strong correlation between the first factor and neutron-

porosity (Fig. 12c) and resistivity (Fig. 12d) for the 2D case. The crossplot in Fig. 12e confirms the 

reliability of the factor analysis-based water content estimation. The high correlation coefficient shows 

a strong linear proportionality between the inversion-based and statistical estimation results. The 

correlation coefficients of the above regression relations are inversely related to the scattering of data 

points, which depend on not only the data noise but also the lateral variation in the lithology of the 

shallow formation.               

The 2D MFV-IRFA procedure can be favourably used for the fast automatic processing of large 

statistical samples including outliers. To investigate the horizontal and vertical distribution of water 

content, we first calculate the 2D sections of factor variables. The factor scores are interpolated by 

using a standard kriging algorithm to give an estimate for the spatial distribution of factors between 

the penetration holes (Fig. 13). By using the regression relation between the first factor and water 

content, we derive the 2D section of water content directly from the first factor (Fig. 14). The result of 



1D inverse modelling (Fig. 14a) show a close agreement with that of the 2D MFV-IRFA procedure 

(Fig. 14b). The Pearson’s correlation coefficient calculated between the water content sections is 0.86, 

which shows consistent results.  

 

5 CONCLUSIONS 

 

We suggest a robust algorithm for the factor analysis of engineering geophysical sounding data to 

improve the estimation of water content in shallow formations. The case study and synthetic 

modelling experiments demonstrate that the Most Frequent Value-based factor analysis procedure 

gives highly acceptable results for non-Gaussian distributed data sets. The advantage of the method is 

that it gives continuous in-situ information along the borehole and makes a significant improvement in 

the estimation of water saturation for outlying measurement data. Optimal weights are calculated in a 

fully automated weighting process, while the effect of extreme noises are efficiently suppressed. 

According to our experience, at least 40 % (or even better) relative improvement of estimation 

accuracy can be achieved compared to traditional factor analysis.  

We find a strong correlation between the first factor and water content in shallow sediments, 

which is consistent in different measurement areas in Hungary. Other derived quantities, e.g., air 

saturation and dry density can be extracted from the factors scores more reliably to get information 

that is more detailed on the petrophysical characteristics of near-surface layers. The study of 

subsequent factors may also be of importance in further studies. By the interval inversion-assisted 

factor analysis, additional unknowns can be estimated such as effective porosity and hydraulic 

conductivity. In cross-hole applications, penetration logs originated from several holes can be 

simultaneously processed using the extended version of the MFV-IRFA method, which allows the fast 

calculation of water saturation and derived quantities between the holes. Physical parameters such as 

neutron-porosity or resistivity are sometimes not measured in some depth intervals or boreholes. 

Synthetic logs of the same quantities generated by factor analysis of other observed EGS data can be 

effectively used for the replacement of missing observations. In an ongoing research, we make efforts 

to estimate the textural parameters included in the probe response functions using an interval inversion 



approach. The development of the inversion method supported by robust factor analysis can be an 

important step forward for further improvements in a more accurate and reliable interpretation of 

engineering geophysical sounding data. The statistical workflow introduced in the paper can be 

employed as a powerful data processing tool for hydrogeophysical, environmental and civil 

engineering applications for a more reliable assessment of unsaturated sedimentary structures. 
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APPENDIX: DERIVATION OF DIHESION IN EQUATION (11) 

 

The most frequent value (MFV) in equation (10) is the symmetry point of the probability distribution 

function f(x). For large sample sizes, the corresponding integral formula is 
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where x denotes the sampled variable and  is the dihesion. The weigh function in the above 

expression is 
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which has a maximum value in the centre of gathering and it decreases to approximately zero for 

outlying values of the sample. The dihesion controls the relative importance of the observed data in 

the weighting process. For large values of , the sample is equally weighted, while for small values of 

, only the values in the immediate vicinity of the MFV affect the estimation considerably. We need to 

define a suitable measure for the number of data playing significant role in computing the MFV. 

Steiner (1988) applied the sum of weights given by (A-2) to calculate the number of effective data 

eff(). The optimal value of dihesion is found at the maximum of the expression    /eff . Hence, 

the objective function to be optimized for large sample size is 
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Consider a simplified form of equation (A-3) by fixing the MFV as zero. We derive the function  

with respect to  
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After reorganizing the above equation, we obtain 
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The square root of dihesion is derived from equation (A-5) 
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By substituting the original expression 
2)MFV( x  instead of x2 into equation (A-6), an equivalent 

formula for equation (11) is given, which is used for practical computations. The optimal value of 

dihesion is automatically estimated in an iterative process by the subsequent use of equations (10)–

(11).  

 



TABLES 

Table 1 Zone parameters used in equations (1)–(4) for calculating engineering geophysical sounding 

logs in Bátaapáti test site. 

 

Zone parameter Notation Texture Clay Sand Water Unit 

Gamma-ray intensity GR  11.6 1.45 0 cpm 

Density ρb  2.10 2.60 1.0 g/cm3 

Neutron-porosity ΦN  0.23 0 1.0 V/V 

Resistivity R  6.50  9.0 ohm-m 

Cementation exponent m 1.68     

Tortuosity factor a 1.0     

Saturation exponent n 2.0     

 

Table 2 Rotated factor loadings estimated by the MFV-IRFA procedure in Hole4. 

 

EGS log Factor loading First factor Second factor 

Cone resistance L(RCPT) 0.41 0.30 

Natural gamma-ray L(GR) 0.31 0.32 

Density L(
b
) 0.88 0.09 

Neutron-porosity L(
N

) 0.93 0.08 

Resistivity L(R) 0.97 0.15 



FIGURES 

 

Figure 1 (a) New cone head (on the left) and cone head after sounding in boulder stone (on the right) 

in Jülich, Germany; (b) surface unit model E1009; (c) engineering geophysical sounding equipment 

ready for measurement; (d) neutron probe used for estimating porosity and water content. 



 

Figure 2 Flowchart of the interval inversion-assisted iteratively re-weighted factor analysis procedure 

used for estimating petrophysical parameters from engineering geophysical sounding logs. 

 



 

Figure 3 Penetration logs measured in Hole-4, Bátaapáti, South-West Hungary: natural gamma-ray 

intensity, GR, density, ρb, neutron-porosity, ΦN, electric resistivity, R; result of interval inversion: 

water content, Vw, clay volume, Vcl, sand volume, Vs, average correlation of model parameters, 

CORR(B), average correlation of petrophysical parameters, CORR(m). 



 

Figure 4 (a) Regression relation between the first factor extracted by MFV-based iteratively re-

weighted factor analysis and water saturation estimated by interval inversion procedure in Hole−4; (b) 

crossplot of water content values estimated separately by factor analysis and interval inversion; r 

denotes the Pearson’s correlation coefficient. 

 

 

 



 

Figure 5 Penetration logs measured in Hole-4, Bátaapáti, South-West Hungary: cone resistance, 

RCPT, natural gamma-ray intensity, GR, density, ρb, neutron-porosity, ΦN, electric resistivity, R; result 

of MFV-based iteratively re-weighted factor analysis: first factor, F1, second factor, F2, water content, 

Vw,MFV-IRFA; the result of interval inversion: water content, Vw and Vw,inversion, clay volume, Vcl, sand 

volume, Vs, gas volume, Vg. 

 

 



 

Figure 6 MFV-based weighting process used in the factor analysis of penetration logs observed in 

Hole–12, RCPT is cone resistance, GR is natural gamma-ray intensity, DEN is density, NPHI is 

neutron-porosity, RES is resistivity; (a) dihesion is optimized for each log separately; (b) weight 

coefficients in the function of the deviation between observed and predicted data; (c) frequency 

(pieces normalized to the number of sampled depths) plot of Steiner weights; (d) frequency plot of 

data deviations. 

 

  

 

 

 



 

Figure 7 MFV-based iterative factor analysis of penetration logs observed in Hole–12; (a) decrease of 

Steiner weights during the iterative process; (b) improvement of the overall deviation between the 

measured and calculated (standardized) EGS data during the iteration process. 

 



 

Figure 8 Crossplot of the first and second factor extracted from EGS data observed in Hole–12; (a) 

result of traditional factor analysis; (c) result of the robust MFV-based iteratively re-weighted factor 

analysis. 

 



 

Figure 9 Regression relation between the first factor and water saturation in Hole–12; (a) result of 

traditional factor analysis; (b) result of MFV-based iteratively re-weighted factor analysis; r denotes 

the Pearson’s correlation coefficient. 

 

 

 

 



 

Figure 10 Penetration logs measured in Hole-12, Bátaapáti, South-West Hungary: cone resistance, 

RCPT, natural gamma-ray intensity, GR, density, ρb, neutron-porosity, ΦN, electric resistivity, R; result 

of factor analysis: first factor estimated by traditional factor analysis, F1,TFA, and MFV-based factor 

analysis, F1,MFV-IRFA, second factor estimated by traditional factor analysis, F2,TFA, and MFV-based 

factor analysis, F2,MFV-IRFA, water saturation estimated by traditional factor analysis, Sw,TFA, and MFV-

based factor analysis, Sw,MFV-IRFA; result of local inversion: water saturation, Sw,inversion, water content, Vw 

or Vw,inversion, clay volume, Vcl, sand volume, Vs, gas volume, Vg. 

 

 



 

Figure 11 Results of synthetic statistical tests: natural gamma-ray intensity log, GR, water volume 

estimated by traditional factor analysis using 5% Gaussian noise, Vw,TFA (5 %) and MFV-based factor 

analysis, Vw,MFV-IRFA (5 %), water volume estimated by traditional factor analysis using 5% Gaussian 

noise and outliers, Vw,TFA (5 %+outl.) and MFV-based factor analysis, Vw,MFV-IRFA (5 %+outl.), exactly 

known water volume,  Vw,exact and Vw, clay volume, Vcl, sand volume, Vs, gas volume, Vg. 

 



 

Figure 12 Regression relations between the first factor estimated by 2D MFV-based iterative factor 

analysis and petrophysical parameters in Holes 1–12, Bátaapáti, South-West Hungary; (a) first factor 

vs. water saturation (b) vs. water volume (c) vs. observed neutron-porosity (d) vs. observed resistivity; 

(e) water saturation estimated separately by local inversion and factor analysis; r denotes the Pearson’s 

correlation coefficient. 

 



 

Figure 13 Factor maps estimated by 2D MFV-based iterative factor analysis of penetration logs 

measured in Holes 1–12, Bátaapáti, South-West Hungary; (a) cross sections of the first statistical 

factor, F1 (b) second statistical factor, F2; borehole symbols indicate the locations of penetration holes 

drilled along the profile. 

 

 

 

 

 

 



 

Figure 14 Water volume (Vw) maps estimated by 2D MFV-based iterative factor analysis of 

penetration logs measured in Holes 1–12, Bátaapáti, South-West Hungary; (a) result of a set of 1D 

local inverse modelling (b) 2D MFV-based iterative factor analysis; borehole symbols indicate the 

locations of penetration holes drilled along the profile. 

 


