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Abstract 

This paper presents the application of a refined version of the original Snyman-Fatti (SF) global 

continuous optimization algorithm (Snyman, Fatti 1987) to the optimal design of welded square stiffened 

plates. In particular we investigate square plates of square symmetry subjected to uniformly distributed 

normal static loads, supported at four corners, and stiffened by a square symmetrical orthogonal grid of 

ribs. Halved rolled I-section stiffeners are used welded to the base plate by double fillet welds. Profiles of 

different size are used for internal and edge stiffeners.  

A cost calculation method, developed by the first two authors and mainly used for welded structures 

(Farkas, Jármai 2003), allows for the computation of cost for different proposed designs of the welded 

stiffened plates. The cost function includes material, welding as well as painting costs, and is formulated 

according to the fabrication sequence. Design variables include base plate thickness as well as the 

dimensions of the edge and internal stiffeners. Constraints on stress in the base plate and in stiffeners, as 

well as on deflection of edge stiffeners and of internal stiffeners are considered. For this purpose the 

global unconstrained trajectory method of Snyman-Fatti is adapted to handle constraints of this type. For 

control purposes a particle swarm optimization algorithm is also applied to confirm the results given by 

the SF algorithm. 

Since the torsional stiffness of open section stiffeners is very small, the stiffened plates are modelled as a 

torsionless gridwork. We present an algorithm for calculating the moments and deflections for torsionless 

gridworks with different number of internal stiffeners, using the force method.  

 

Keywords:  Structural optimization, Welded structures, Stiffened plates, Fabrication cost, Minimum cost 

design, Mathematical global optimization methods 

 

 

1.  Introduction 

Stiffened plates are often used in various steel structures, e.g. in building roofs and floors, bridges, ships, 

offshore platforms etc. Structural characteristics of stiffened plates are as follows: material, loads, 

geometry of stiffening, supports, stiffener profile, number of stiffeners, fabrication technology and costs. 

A cost calculation method (Farkas, Jármai 1997) enables a realistic minimum cost design of welded 

stiffened plates and has been applied for various structural problems. One of these problems is the 

economy of stiffened plates and circular cylindrical shells. The costs of stiffened and unstiffened 

structural versions have been compared to each other to give conclusions for designers (Farkas et al. 

2002, Farkas, Jármai 2005ab, Farkas 2005, Jármai et al. 2006). 

In the present study a square plate is investigated subject to uniformly distributed normal static load, 

supported at four corners, stiffened by a square symmetrical orthogonal grid of ribs. Halved rolled I-

section stiffeners are used and are welded to the base plate by double fillet welds (Fig.1). 

 

The bending moments are calculated using the force method for torsionless gridworks with different 

numbers of stiffeners. Constraints on stress in the base plate and in stiffeners as well as on deflection of 
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edge stiffeners and of internal stiffeners are formulated. The cost function includes material, welding as 

well as painting costs and is formulated according to the fabrication sequence. 

The design variables are the base plate thickness, the dimensions of edge and internal stiffeners and the 

number of internal stiffeners. 

Fig.1 shows a schematic drawing of a square stiffened plate supported at four corners. In our study halved 

rolled I-section stiffeners are used with different dimensions for the edge stiffeners and for the internal 

stiffeners. 

 

2.  Geometric characteristics of stiffeners 

 

In the calculation the notation is the same for internal and edge stiffeners. For edge stiffeners an 

additional e subscript is used. 

 

Edge stiffeners are visible on Fig. 1. 

Effective cross-sectional area 
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where E is the Young modulus, fy is the yield stress. The effective plate width sE is calculated according 

to design rules of ECCS (1988). 

h1e = he – 2tfe           (2) 
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Figure 1. A schematic illustration of a stiffened square plate supported at four corners as well as the cross-

sections of the edge and the internal stiffeners 
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We have neglected the flange plate inertia around their own centre of gravity. We have also neglected the 

fillets effect on the inertia. For internal stiffeners the same formulae hold but without index e (Fig. 1). 

 

3.  Costs as a function of number of internal stiffeners (n) in one direction 

 

The corresponding structural volumes are as follows. 

V0 = L2t;  V1 = V0 + 4AeSL;   V2 = V1 + nLAS;        (6) 

V3 = V2 + nLAS;  AeS = betfe + h1etwe/2 ;         (7) 

AS = btf + h1tw/2          (8) 

where L is the length of the square plate (L = 18 m in the example). 

Welding of the base plate with 36 plate parts of dimension 6x1.5 m using GMAW-C (gas metal arc 

welding with CO2 gas) single-bevel welds with complete joint penetration 

 LtxC.VkK n
WFF 13103136 13

01
         (9) 

where kF is the specific fabrication cost,   is the material density, Cw is the welding technology 

parameter,  is the difficulty parameter. In the multiplier 1.3 the additional welding times are considered. 

The welding cost function contains two parts: the first part of the equation means the preparation time, 

where the number and volume of the elements are important, second part contains the real welding time 

and some additional process times. 

Welding of four edge stiffeners to the base plate (5 elements in total) by double fillet welds using 

GMAW-C 
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 Lax.x.VkK weFF 81033940315 23
12

        (10) 

where the welding joint size is awe, 0.3394x10-3 is the welding technology parameter. Edge stiffeners are 

welded together at the corners, but this welding time is neglected. 

awe = 0.4twe, but awe.min = 3 mm        (11) 

Welding of n continuous internal stiffeners to the base plate and to the edge stiffeners by double fillet 

welds using GMAW-C 

    bhLnax.x.VnkK wFF 221033940311 1
23

23        (12) 

where the welding joint size is aw 

aw = 0.4tw, but aw.min = 3 mm        (13) 

Welding of n intermittent internal stiffeners to the base plate, to the edge stiffeners and to the continuous 

internal stiffeners (at the internal nodes butt welds are used for connection of bottom flanges) 

        11
23

34 4212210339403111 TbnnnhnnLax.x.VnnkK wFF    

bntC.T n
fw

21
1 231          (14) 

for butt welds using GMAW-C   

for  tf<15 mm  Cw =0.1939x10-3, n1 = 2       (15a) 

for tf >15 mm  Cw = 0.1496x10-3, n1 = 1.9029      (15b) 

 

Cost of material is proportional to the volume, density and the specific fabrication cost parameter 

3VkK MM            (16) 

where kM is the specific material cost. 

Cost of painting is proportional to the painted surface area (SP), the difficulty factor (P) and the specific 

painting cost parameter (kP)  

PPPP SkK            (17) 

   bhLnbhLLS eeP 22242 1
2

1
2         (18) 

 

Total cost is the sum of the previous cost elements 

K = KM + KF1 + KF2 + KF3 + KF4 + KP       (19) 

 

4.  Constraints 

 

Stresses in edge stiffeners from bending moment Me in the top fiber and from local bending of the base 

plate 
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where the distance between the internal stiffeners is 
1


n

L
a , p0 is the factored uniformly distributed 

load. 

c = 0.3078, the value comes form Timoshenko & Woinowsky-Krieger, S. (1959) page 202, in which the 

maximum bending moment in the square plate with all edges built in is M = 0.0513 pa2 and the section 

modulus of the plate is t2/6. The stress of the base plate is always larger at the edges than in the middle 

see Timoshenko & Woinowsky-Krieger, S. (1959), so there is no constraint defined for the base plate. 

In the calculation of the first term of Eq. (20) the stress in the center line of the base plate is considered. 

Stress in edge stiffener bottom fiber from the bending moment 
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Stresses in the internal stiffeners from bending moment M in the top fiber and from local bending of the 

base plate 
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In the calculation of the first term of Eq. (22) the stress in the center line of the base plate is considered. 

Stress in the internal stiffener bottom fiber from bending moment 
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Deflection of the edge stiffeners 

adme ww            (24) 

Deflection of the internal stiffener 

admww 1           (25) 

Bending moments and deflections should be derived for each number of internal stiffeners n. 

Stability considerations 

The constraint on the local buckling of the based plate is considered by calculation of the effective plate 

width. The rolled stiffeners have no stability problems. 

 

5.  Numerical data 

 

Yield stress of steel  fy = 355 MPa,  fy1 = fy/1.1, elastic modulus  E = 2.1x105 MPa,  edge length of the 

base plate  L = 18.0 m, factored load intensity p0 = 0.0015 N/mm2, load intensity considering the self 

mass 
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density of steel 610857  x. kg/mm3, 5
0 10857  x.  N/mm3, 

admissible deflection wadm = L/300, 

factor for the complexity of assembly  3, factor for the complexity of painting ,P 3  

cost factors: kM = 1.0 $/kg, kF = 1.0 $/min, kP = 14.4x10-6 $/mm2. 

The ranges of unknowns: t = 4 – 40 mm, h and he = 152 – 1008.1 mm. 

The discrete values of h and the nominal size of I-beam (UB)(in the parenthesis) are as follows according 

to ARCELOR catalogue: 152.4 (152), 177.8 (178), 203.2 (203), 257.2 (254), 308.7 (305), 353.4 (356), 

403.2 (406), 454.6 (457), 533.1 (533), 607.6 (610), 683.5 (686), 762.2 (762), 840.7 (838), 910.4 (914), 

1008.1 (1016) mm.  

Approximate expressions for other dimensions of rolled I-profiles as a function of h or he according to the 

ARCELOR catalogue are detailed in Appendix. 

 

6.  Special case of three internal stiffeners (n = 3) (Fig.2) 

 

The internal forces in the nodes of the gridwork are F1, F2 and F3 (Fig.2), since in the nodes locating in 

the diagonals internal forces do not occur because of square symmetry. The unknown forces can be 

determined by solving two equilibrium, and one deflection equation.  

The equilibrium equations are as follows (Fig.2): 

2pa2 + F1 = 2F3          (27) 

2pa2 – 2F1 = 2F2          (28) 

The deflection equation expresses the fact that the two internal stiffeners in the nodes No.1 have the same 

deflection 

w13 – w30 = w12 – w20         (29) 

where  w30 and w20 are the deflections of the edge stiffeners. 
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Figure 2.  Square plate with three internal stiffeners in one direction. Internal forces and deflections 
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Introducing the notation  yye I/I   one obtains the equation 
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Together with the equilibrium equations the solution of the three equations is 
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The maximum bending moment in the edge stiffeners 
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and in the internal stiffener 
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The constraint on maximum deflection for an edge stiffener is expressed as 

we = 300020 /Lw .             (40) 

and for an internal stiffener 

w1 = 300013 /Lw .           (41) 

w20.0 and w13.0 should be calculated with p0 instead of p, it means that the self weight is neglected: 

 
 111103

116256

2
0

10 


 


Lp
F         (42) 

10

2
0

20
16

F
Lp

F            (43) 

216

10
2

0
30

FLp
F           (44) 

yeyeye
.

EIx

LF

EI

LF

EIxx

Lp
w

646

11

4816848

5 3
30

3
20

5
0

020         (45) 

yy
.

EI

LF

EIx

Lp
w

486448

5 3
10

5
0

013          (46) 

 

7.  Special case of four internal stiffeners (n = 4) (Fig.3) 

 

Similar than in the case of n = 3, there are also three unknown forces F2, F3 and F5, since in the nodes 

No.1 and No.4 internal forces do not occur because of symmetry. The calculation is similar, but to 

demonstrate the difficulty of determination of grid forces and moments, it is described in details. The two 

equilibrium equations are as follows: 
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The deflection equation is expressed as  
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where 
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Solving the two equilibrium and one deflection equation one obtains 
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Figure 3.  Square plate with four internal stiffeners in one direction. Internal forces and deflections 
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The maximum bending moment in the edge stiffener is given by 
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The maximum bending moment in the internal stiffeners is the larger of the following two values 
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Deflection constraints should be calculated with  forces using p0 instead of p: 
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Deflection constraint for edge stiffeners 
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8.  Special case of five internal stiffeners (n = 5) (Fig.4) 

 

Unknowns: F2, F4, F5, F6, F8, F9   

Equilibrium equations: 

3pa2 + 2F5 + F4 = 2F9         (64) 

3pa2 –2F5 + F2 = 2F8         (65) 

3pa2 – 2F4 – 2F2 = 2F6         (66) 

 



 7 

 

Figure 4.  Square plate with five internal stiffeners in one direction. Internal forces and deflections 

 

 

Deflection equations: 

For the node 5 

w59 – w90 = w58 – w80         (67) 

For the node 4 

w49 –w90 = w46 – w60         (68) 

For the node 2 

w28 – w80 = w26 – w60         (69) 

The deflections are as follows 
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for the stiffener 9-9 

3

20

6

23

3

22 3
5

3
4

5

59

aFaFpa
wEI y         (73) 

3

23

2

9

16

135 3
5

3
4

5

49

aFaFpa
wEI y         (74) 

for the stiffener 8-8 
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for the stiffener 6-6 
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After the substitution of Eqs (70-78) into Eqs (67, 68 and 69) one obtains 

  21147144272160864368208 2
986542  paFFFFFF    (79) 

  21200192368224736656368 2
986542  paFFFFFF    (80) 

  21534896644163681072 2
986542  paFFFFFF     (81) 

After the solution of six equations (64, 65, 66, 79, 80, 81) we calculate the bending moments and 

deflections to check the constraints. The maximum bending moment in the edge stiffener can be 

expressed as 
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The governing bending moment in the internal stiffeners M is the maximum from the following three 
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Deflection constraints should be calculated with forces using p0 instead of p (F20,F40,F50,F60,F80,F90): 
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9.  Mathematical optimization methods 

 

9.1. General formulation of design optimization problem 

 

In the case of the welded square stiffened plate the design variables are t, h and he. The cost function K, 

also called the objective function, and the constraints clearly depend on these variables. Different number 

of internal stiffeners means a special case of the welded square stiffened plate design, with different 

internal forces and deflections. In more general optimization notation, the design vector is denoted by 

 T321 x,x,xx = [t, h, he]T, and the objective function by f(x)=K(x). The constraints, here (20, 21, 22, 23, 

24, 25), may be written in the standard inequality form as   61,..,j0,g j x . More explicitly the 

constraints are: 

 

01  ye1 f)()(g xx   

011  ye2 f)()(g xx   

01  y3 f)()(g xx           (89) 

011  y4 f)()(g xx   

0 adme5 w)(w)(g xx  

01  adm6 w)(w)(g xx  

 

Thus it is required to minimize, for each specified number of internal stiffeners (n=3,4,5), the objective 

function f(x)=K(x) given by (19), subject to the inequality constraints (89). 

 

Before presenting the optimization results we briefly summarize the basics of the optimization algorithms 

used here, namely the Snyman-Fatti (SF) global trajectory method and also the Particle Swarm 

Optimization (PSO) method that was used as a control. 

 

9.2 The Snyman-Fatti method 

 

The global method used here, namely the Snyman-Fatti (SF) multi-start global minimization algorithm 

with dynamic search trajectories for global continuous unconstrained optimization (Snyman, Fatti 1987, 

(Groemwold, Snyman 2002), was recently reassessed and refined (Snyman, Kok 2007) to improve its 

efficiency and to be applicable to constrained problems. The resultant improved computer code has been 

shown to be competitive with of the best evolutionary global optimization algorithms currently available 

when tested on standard test problems (Snyman 2005). Here we wish to apply it to the practical 

stiffened plate problem outlined in the previous sections. For a detailed presentation and discussion of the 

motivation and theorems on which the SF algorithm is based, the reader is referred to the original paper 

of Snyman and Fatti (1987). Here we restrict ourselves to a summary giving the essentials of the multi-

start global optimization methodology using dynamic search trajectories. 

Consider the general inequality constrained problem: 

    nT
n

.t.r.w
Rx,x,x,f  21minimize xx

x
,      (90) 

subject to the inequality constraints:  
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  m,,,j,g j 210 x  

 

The optimum solution to this problem is denoted by x* with associate optimum function value f(x*).  

 

We address the constrained problem (90) by transforming it to an unconstrained problem via the 

formulation of the penalty function F(x), to which the unconstrained global SF optimization algorithm is 

applied. The penalty function F(x) is defined as 

2

1

})(g{)(f)(F

m

j

j


 xxx          (91) 

where j=0 if gj(x)≤0, else j=(a large number). g(x)2 is used to ensure that the second part is positive 

and to increase its value. 

 

Thus we consider the unconstrained global optimization problem that can be stated: for a continuously 

differentiable objective function F(x): find a point x*( in the set XRn such that 

F*=F(x*( )= minimum of F(x) over x X      (92) 

 

The SF algorithm applied to this problem, is basically a multi-start technique in which several starting 

points are sampled in the domain of interest X (usually defined by a box in Rn), and a local search 

procedure is applied to each sample point. The method is heuristic in essence with the lowest minimum 

found after a finite number of searches being taken as an estimate of F*. 

 

In the local search the SF algorithm explores the variable space X using search trajectories derived from 

the differential equation: 

))(( tx-x F           (93) 

where  F is the gradient vector of F(x). Equation (93) describes the motion of a particle of unit mass in 

an n-dimensional conservative force field, where F(x(t))  represents the potential energy of the particle at 

position x(t). The search trajectories generated here are similar to those used in Snyman's dynamic 

method for local minimization (Snyman 1982, 1983). In the SF global method, however, the trajectories 

are modified in a manner that ensures, in the case of multiple local minima, a higher probability of 

convergence to a lower local minimum than would have been achieved had conventional gradient local 

search methods been used. The specific modifications employed result in an increase in the regions of 

convergence of the lower minima including, in particular, that of the global minimum. A stopping rule, 

derived from a Bayesian probability argument, is used to decide when to end the global sampling and 

accept the current overall minimum value of F, taken over all sampling points to date, as the global 

minimum F*. 

 

For initial conditions, position x(0)=x0 and velocity x(0)=v(0)=v0=0, integrating (93) from time 0 to t, 

implies the energy conservation relationship: 

(0))F((0))F((0)(t))F(t
2

2
1 xxvxv

2
)(

2
1       (94) 

 

The first term on the left-hand side of (94) represents the kinetic energy, whereas the second term 

represents the potential energy of the particle of unit mass, at any instant t. Obviously the particle will 

start moving in the direction of steepest descent and its kinetic energy will increase, and thus F will 

decrease, as long as it moves downhill, i.e. as long as - F·v>0, where · denotes the scalar product. 

 

If descent is not met along the generated path then the magnitude of the velocity v decreases as it moves 

uphill and its direction changes towards a local minimizer. If the possibility of more than one local 

minimizer exists and we are interested in finding the global minimum, a realistic global strategy is to 

monitor the trajectory and record the point xm and corresponding velocity vm = xm and function value Fm 

at which the minimum along the path occurs, letting the particle continue uninterrupted along its path 

with conserved energy. This is done in the hope that it may surmount a ridge of height Fr, Fm<Fr<F(x(0), 

continuing further along a path that may lead to an even lower value of F beyond the ridge. On the other 

hand it is necessary to terminate the trajectory before it retraces itself or approximately retraces itself in 

indefinite periodic or ergodic (space-filling) motion. A proper termination condition that employed in the 

SF algorithm, is to stop the first trajectory once it reaches a point with a function value close to its starting 
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value Fs=F(x(0)) while still moving uphill, i.e. while  F·v>0. At this point, once termination has 

occurred and after setting the best point xb:= xm  with corresponding function value Fb:=Fm, it is proposed 

that a further auxiliary or inner trajectory be started from a new inner starting point xs:=½(x0+xb) with 

initial velocity ½ vm and associated starting function value Fs=F(xs). Again for this new auxiliary or inner 

trajectory the function value is monitored, and for this new trajectory xm and associated vm are recorded 

anew. On its termination, again once the function value approaches Fs sufficiently closely while moving 

uphill, the starting point for the next inner trajectory is taken as xs=½(xs +xb) with initial velocity ½vm, 

where xb again corresponds to the overall best point for the current sampling point. This generation of 

successive inner trajectories is continued until xb converges or )( b
xF  is effectively zero.  

 

Of course, the above strategy assumes that the trajectory obtained from the solution of differential 

equation (93) is exactly known at all time instances. In practice this is not possible, and the generation of 

the trajectories is done numerically by means of the leap-frog scheme [14]: Given initial position x0=x(0) 

and initial velocity v0=v(0)= x(0) and a time step t, compute for k=0,1,2,… 

xk+1=xk+vkt          (95) 

vk+1=vk- )( 1k xF t 

 

A heuristic procedure is used to select an appropriate time step t (Snyman, Kok 2007). Once the 

sequence of inner (auxiliary) trajectories for the current iteration (i.e. current random starting point) is 

terminated the local minimum xk+1 with function value Fk+1 obtained at that iteration, is evaluated for its 

probability of being the global minimum. This global component of the algorithm involves a stochastic 

criterion that reports the probability of the lowest obtained minimum to be the global one (Snyman, Fatti 

1987). To this end, let Rj denote the region of convergence of a local minimum j

^

F  in the search space, 

and j  denote the probability that a randomly selected point falls within Rj . Let R* and * denote the 

corresponding quantities for the global minimum F*. Snyman and Fatti (1987) then argue that, because of 

its special characteristic of seeking a low local minimum that for the local search methodology described 

above one may, for a large class of problems of practical and scientific importance, make the assumption 

that 

maximumj{ j }         (96)

Accordingly they made use of the following theorem to terminate the multi-start algorithm. 

 

Theorem: Let ir be the number of sample (starting) points falling within the region of convergence of the 

current overall minimum Fopt after it points have been sampled. Then under the assumption given in (96) 

and a non-informative prior distribution, the probability that Fopt be equal to F* , Pr[Fopt = F*], satisfies 

the following relationship: 

Pr   q(it,ir)=1-(it+1)!(2 it-ir)!/[(2 it+1)!(it-ir)!]      (97) 

 

In practice a tolerance F is prescribed in order to determine whether a newly obtained local minimum 

also corresponds to the current overall minimum Fopt. Thus, if at the end of the final inner trajectory, |Fk+1 

- Fopt |< F, then the number of successes ir is stepped up by one. Also a prescribed target value q* is set 

for q(it,ir) so that once q(it,ir)>q* the global procedure terminates with F* :=Fopt. 

 

Once x*(the global minimizer of the penalty function defined in (91) is found, it is a straightforward 

matter to determine the active constraints of the original constrained problem (90). The exact solution x* 

to the constrained problem is then found by the one-time application of the trajectory method to the 

minimization of the sum of the squares of the residues of the active constraints, using x*(as starting 

point. 

 

9.3  The Particle Swarm Optimization algorithm 

 

The second method used here for control purposes is a Particle Swarm Optimization (PSO) techniques, 

which belong to a relatively new class of evolutionary based search procedures that may be used to find 

the optimum solution x* of the general optimization problem. The original PSO algorithm, proposed by 

Kennedy and Eberhardt in 1995, was inspired by the modelling of the social behaviour patterns of 

organisms that live and interact within large groups. In particular, PSO incorporates swarming behaviours 
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observed in flocks of birds, schools of fish, or swarms of bees. A PSO algorithm is easy to implement in 

most programming languages, since the core of the program can be written in a few lines of code. It has 

been proven to be both fast and effective, when applied to a diverse set of optimization problems. PSO 

algorithms are especially useful for parameter optimization in continuous, multi-dimensional search 

spaces.  

 

In performing a search in the multi-dimensional space associated with the optimization problem of the 

form (89, 90), the PSO technique assigns direction vectors and velocities to each member (particle) of the 

swarm at their current positions. Each particle then “moves” or “flies” through the search space according 

to the particle’s assigned velocity vector, which may be influenced by the directions and velocities of 

other particles in its neighbourhood. These localized interactions with neighbouring particles, propagate 

through the entire “swarm” of particles and results in the swarm as a whole moving to regions of the 

space closer to the solution of problem (89). The extent to which a particular particle influences other 

particles is determined by its so-called “fitness” along its trajectory of candidate solution points. The 

“fitness” is a measure assigned to each potential solution, and it indicates how good a particular candidate 

solution is relative to all other solution points. Hence, an evolutionary idea of “survival of the fittest” (in 

the sense of Darwinian evolution) comes into play, as well as a social behaviour component through a 

“follow the local leader” effect and emergent pattern formation (Farkas, Jármai 1997). 

 

A more precise and detailed description of the particular PSO algorithm, as applied to penalty function 

formulation (91), and used in this study now follows.  

 

Basic PSO Algorithm  

 

1) Given M, kmax, Nmax. Set (time) instant k=0, . g
F

g
F  b

iF before   Initialise a random 

population (swarm) of M particles (swarm members), by assigning an initial random position 0
ix  

(candidate solution), as well as a random initial velocity
0

iv , to each particle i, i=1,2,…,M. Then compute 

simultaneous trajectories, one for each particle, by performing the following steps. 

 

2) At instant k, compute the fitness of each individual particle i at discrete point 
k

ix , by evaluating 

)F k
ix( . With reference to the minimization (89), the lower the value of )F k

ix( , the greater the particle’s 

fitness.  

 

3) For i=1,2,…,M: 

if b
i

k
i F)F x(  then set k

i
b
i

k
i

b
i  and )FF xpx  (   {best point on trajectory i} 

      if k
i

bk
i

ggk
i  and  )FF   setthen F)F xgxx  ((  {best global point} 

 

4) If       1NN  setelse  ,N  setthen F  F g
before

g  1 . 

 

5) If   N> Nmax  or  k> kmax then STOP and set x* = gb; else continue. 

 

6) Compute new velocities and positions for instant k+1, using the rule: 

               for i=1,2,…,M: 

              )rc)rc: k
i

bk
i

b
i

k
i xgxpvv

1k
i  (( 2211        (98) 

1k
i

k
i

1k
i :   vxx          (99) 

where 1r  and 2r  are independently generated random numbers in the interval [0,1], and 1c , 2c  are 

parameters with appropriately chosen values. 

 

7) Set  FF and   1kk 
gg

before  ; go to step 2. 
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The technique is modified in order to be efficient in technical applications. It calculates discrete optima, 

uses dynamic inertia reduction and craziness for some particles [16]. 

 

 

10.  Optimization results 

 

Results obtained for continuous variables by the Snyman-Fatti global minimization algorithm are 

summarized in   Table 1.  The values of the parameters used are F=10-2, q*=0.99 and =102. For each 

case of n the box X was defined by: 750 x1 1250;  750 x2 1250; 7.5 x3 12.5. The respective 

number of function-cum-gradient evaluations were 1860 for n=3, 1455 for n=4, and 1904 for n=5. The 

gradients were approximated using forward finite differences with variable perturbations of 10-3.   

 

Table 1 shows that the constraints (   61,..,j0,g j x ) are all effectively satisfied at the computed 

global minimum. However, different constraints are active for the different cases. For n=3 constraints 1, 2 

and 6 are active, for n=4 constraints 1, 5 and 6 are active, and for n=5 the active constraints are 3, 4 and 5. 

 

Table 1. Continuous results obtained by the global minimization algorithm. Dimensions and deflections 

in mm, stresses in MPa, costs in $ 

 

 

Results obtained for continuous variables by PSO are summarized in Table 2. 

 

 

Table 2.  Results obtained by PSO for continuous (cont) and discrete (disc) variables. Dimensions and 

deflections in mm, stresses in MPa, costs in $ 

 

The penalty parameter value was 1.0e8, the probability of craziness (% i.e: 0 - 100) was 1.5, the cognitive 

learning coefficient, (0.5-2) was 2.0, the social learning coefficient was 1.4, the dynamic inertia scale 

factor beta was 0.98. The function evaluations were required were about 20000-22000. Probability of 

craziness is similar, that of mutation at genetic algorithm. Its value is about 1-3 %. 

 

Results obtained for discrete variables by PSO are summarized in Table 3. 

 

The results clearly show that the optimal value for the number of internal stiffeners is nopt = 4. The stress 

constraints are active for n = 3 and n = 5, the deflection constraint is active for n = 4. Activeness means 

not equality, but close value to the limit. 

The continuous results are nearly identical and show the robustness of both techniques. At PSO some 

slight violations of the constraints may occur. Discrete results are also important for designers to apply 

them easily. Table 3 shows that the discrete results are close to the continuous ones. The distance depends 

on the number of available cross sections. 

 

11.  Conclusions 

 

It has been assumed that a plate supported at four corners and stiffened by open section ribs can be 

modelled by a torsionless gridwork. In the case of square symmetry the equations of the force method can 

be significantly simplified. Halved rolled I-section stiffeners can be used with different dimensions for 

edge and internal ribs. The uniformly distributed normal load causes also local bending stresses in the 

base plate fields. For different prescribed values of design variables, that include base plate thickness as 

well as the dimensions of the edge and internal stiffeners, this model allowed for the evaluation of 

constraint violations relating to stresses in the base plate and in stiffeners as well as to deflections of 

stiffeners. Thus the total cost, which includes the material, the manufacturing and painting costs, could be 

minimized subject to these structural constraints using mathematical optimization techniques, in which 

fabrications constraints guaranteeing a suitable welding technology were also taken into account. In 

particular the cost function includes the material, welding and painting costs and is formulated as a 

function of the number of stiffeners in one direction (n). The costs are analyzed considering the 

fabrication sequence.  
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Since the derived formulae for constraint evaluation are different for different number of stiffeners, it was 

necessary to carry out the optimization separately for each stiffener number. Here the optimization was 

performed for number of stiffeners n = 3, 4 and 5 which allowed for the identification the minimum cost 

design with n = 4. 

 

In giving nearly identical results, the two different mathematical function minimization methods used 

here, namely the Snyman-Fatti global optimization algorithm and the particle swarm optimization (PSO), 

prove to be suitably robust, reliable and sufficiently accurate methods for obtaining practical optimal 

designs for square stiffened plates . 
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Appendix  

Approximate formulae for UB profile dimensions 

 

Calculation of b 

y=a+blnx+c/lnx+d(lnx)^2+e/(lnx)^2+f(lnx)^3+g/(lnx)^3+h(lnx)^4+i/(lnx)^4  

a= 4071797665.515043D0  

b= -377581103.813262D0  

c= -25351511152.9463D0  

d= 17442666.41988002D0  

e= 92925416774.55347D0  

f= -155449.0539314809D0  

g= -187087676930.7058D0  

h= -10894.44641480538D0  

i= 160167765716.8299D0  

 

Calculation of tf 

y=a+bx+cx^2+dx^3+ex^4+fx^5+gx^6+hx^7+ix^8  

a= -26.93815960004096D0  

b= 0.7030053163805572D0  

c= -0.00569333794408951D0  

d= 2.383106250400329D-05  

e= -5.605511588090933D-08  

f= 7.662794270183799D-11  

g= -5.902409057606285D-14  

h= 2.267417890058806D-17  

i= -2.999371273581411D-21  

 

Calculation of tw 

y=a+bx+cx^2+dx^3+ex^4+fx^5+gx^6+hx^7+ix^8  

a= 4.598131596507252D0  

b= -0.1667245080692302D0  

c= 0.002662252638593643D0  

d= -1.662919423768273D-05  

e= 5.42570607199179D-08  

f= -1.003562930723944D-10  

g= 1.063362616433473D-13  

h= -6.028516559742138D-17  

i= 1.419727612597333D-20  
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Figure captions 

Figure 1. Schematic illustration of a stiffened square plate supported at four corners as well as the cross-

sections of the edge and the internal stiffeners 

Figure 2.  Square plate with three internal stiffeners in one direction. Internal forces and deflections 

Figure 3.  Square plate with four internal stiffeners in one direction. Internal forces and deflections 

Figure 4.  Square plate with five internal stiffeners in one direction. Internal forces and deflections 
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Figure 1. Schematic illustration of a stiffened square plate supported at four corners as well as the cross-

sections of the edge and the internal stiffeners. The vertical plates symbolise the stiffeners. 
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Figure 2.  Square plate with three internal stiffeners in one direction. Internal forces and deflections 
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Figure 3.  Square plate with four internal stiffeners in one direction. Internal forces and deflections 
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Figure 4.  Square plate with five internal stiffeners in one direction. Internal forces and deflections 
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Table 1. Results obtained by the global minimization algorithm SF. Dimensions and deflections in mm, 

limit wmeg = 60 mm, stresses in MPa, limit fy1 = 322.72 MPa, costs in $ 

 

n he h t g1 g2 g3 g4 g5 g6 K 

3 941.40 557.28 14.50  4.8E-4 5.5E-4 -223 -194 -7.8 2.5E-4 108423 

4 1005.24 590.37 8.34 -6.2E-5 -206 -1.74  -112 2.4E-4  -9.5E-5 98271 

5 961.47 778.46 11.98 -64 -128 9.0E-5 -1.2E-4 -7.6E-6 -95 122532 

 

 

 

 

 

Table 2. Results obtained by PSO for continuous variables (cont). Dimensions and deflections in mm, 

limit wmeg = 60 mm, stresses in MPa, limit fy1 = 322.72 MPa, costs in $ 

 

n he h t σe σe1 σ σ1 we w1 K 

3 cont 941.75 557.33 14.49 321.72 322.23 99.12 128.61 52.16 59.99 108424.7 

4 cont 1004.85 589.78 8.37 321.73 116.98 320.06 212.48 59.99 60.39 97994.6 

5 cont 953.43 818.95 12.78 249.07 212.2 289.64 306.8 59.93 32.76 127210 

 

 

 

 

 

Table 3. Results obtained by PSO with discrete (disc) variables. Dimensions and deflections in mm, limit 

wmeg = 60 mm, stresses in MPa, limit fy1 = 322.72 MPa, costs in $ 

 

n he h t σe σe1 σ σ1 we w1 K 

3 disc 980. 607.6 15 296.4 313.9 110. 148. 45.7 56.9 113489.9 

4 disc 1008.1 607.6 9 296.1 222.2 280.9 201.0 56.1 50.5 101576.3 

5 disc 1008.1 762.2 12 238.3 145.4 305.7 308.9 46.9 36.1 134165.5 

 

 

 


