TITLE: Numerical simulation of a freely vibrating circular cylinder with different natural frequencies

ABBREVIATED TITLE: Freely vibrating cylinder: simulation

Dániel Dorogį*
Department of Fluid and Heat Engineering
Institute of Energy Engineering and Chemical Machinery
University of Miskolc
3515 Miskolc-Egyetemváros
Hungary

László Baranyi
Department of Fluid and Heat Engineering
Institute of Energy Engineering and Chemical Machinery
University of Miskolc
3515 Miskolc-Egyetemváros
Hungary

*Corresponding author:
Tel.:+36 20 256 8015
Fax: +36 46 565 471
Postal address: 3515 Miskolc-Egyetemváros, Hungary
E-mail: aramdd@uni-miskolc.hu
Abstract

This paper deals with the numerical simulation of low-Reynolds-number-flow around a freely vibrating circular cylinder in two-degrees-of-freedom. The governing equations are written in a non-inertial system fixed to the moving cylinder and solved using finite difference method. The natural frequency of the cylinder is chosen to be constant, agreeing with the vortex-shedding frequency for a stationary cylinder at Reynolds number Re_0. Systematic computations are carried out for $Re_0=80$, 100, 140 and 180 keeping the mass ratio and structural damping coefficient at $m^*=10$ and $\zeta=0$. The effect of Re_0 on the root-mean-square (rms) values of cylinder displacements and drag coefficients is analyzed. Plotting the data set belonging to different Re_0 values against U^*St_0 makes comparison easier. Local extreme values are found in the rms of streamwise displacement and drag coefficient in the range $U^*St_0=0.4–0.65$. In the vicinity of $U^*St_0=0.5$ the rms of drag approaches zero and the phase angle between the x component of the motion and drag changes abruptly from 0° to 180°. The pressure drag coefficient seems to be responsible for the sudden change. The cylinder follows a distorted figure-eight path in most cases investigated and its orientation changes from clockwise to counterclockwise orbit at around $U^*St_0=0.5$.
Highlights:

- A cylinder is investigated in low Re flow at four different natural frequencies.
- Oscillation amplitudes and drag coefficient shift upwards with higher Re0.
- At $U^*St_0 \approx 0.5$ rms of drag approaches zero and cylinder orbit direction switches.
- At $U^*St_0 \approx 0.5$ phase angle between streamwise motion and drag changes by 180°.
- Pressure drag appears to be related to phase angle and orientation switches.

Keywords: circular cylinder; drag coefficient; free vibration; low Reynolds number; natural frequency; phase angle
1. Introduction

Flow around a circular cylinder is extensively studied due to its practical importance, using both experimental and numerical approaches. The flows are usually classified using Reynolds number based on free stream velocity U_∞, cylinder diameter d and fluid viscosity ν. For stationary cylinders the flow is steady below $Re \approx 47$ and twin vortices are attached to the body. At around $Re=47$ Hopf bifurcation occurs, resulting in an unsteady flow of periodic vortex shedding (Thompson and Le Gal, 2004). Risers, pipes, and underwater structures are good examples of this phenomenon. Periodic vortex shedding from the body can induce high amplitude oscillations, which can cause serious damage to the structure; this phenomenon played an important role in the collapse of Tacoma Narrows Bridge in 1940. Damage to thermometer cases at the Monju fast-breeder nuclear power plant in 1995 leading to a major shutdown of the entire facility was also due to periodic vortex shedding (Nishihara et al., 2005). On the other hand, mechanical energy transferred between the fluid and the moving body can also be beneficial. Possibilities of energy harvesting have been studied e.g. by Bernitsas et al. (2008, 2009) and Mehmood et al. (2013).

Barkley and Henderson (1996), applying linear stability analysis, showed that the flow around a stationary cylinder is two-dimensional (2D) up to $Re \approx 189$. Three-dimensional (3D) instability occurs at $Re \approx 189$ (Mode-A) and at $Re \approx 259$ (Mode B). Thus, the application of a 2D computational code above $Re=189$ is not justified for a stationary cylinder. For vibrating cylinders, however, experiments by Bearman and Obasaju (1982) and Koide et al. (2002) and numerical simulations by Poncet (2002) showed that synchronization (or lock-in) between vortex shedding and cylinder motion increases the two-dimensionality of the flow compared to the case of a stationary cylinder.
cylinder. The upper limit of the two-dimensionality has not been determined due to the large number of influencing parameters.

For the prediction of aerodynamic forces acting on a freely vibrating cylinder researchers often use a forced or controlled oscillation model. This approach is a simplifying model and is often chosen because no equations need to be solved for the cylinder motion. A large number of papers deal with forced oscillation in one-degree-of-freedom (1DoF) cylinder motion, where the cylinder is typically restricted to move only in transverse direction (e.g. Williamson and Roshko, 1988; Lu and Dalton, 1996; Meneghini and Bearman, 1997; Kaiktsis et al., 2007; Baranyi and Daróczy, 2013; Tang et al., 2016) or in streamwise direction (e.g. Okajima et al., 2004; Al-Mdallal et al., 2007; Mureithi et al., 2010). There are relatively few papers dealing with two-degree-of-freedom (2DoF) forced motion (e.g. Jeon and Gharib, 2001; Stansby and Rainey, 2001; Baranyi, 2008; Peppa et al., 2016).

Another approach to the investigation of vortex-induced vibrations (VIV) involves an elastically supported cylinder model, where cylinder displacement is caused by lift and drag forces acting on the body. A large number of studies have dealt with this model, including Bishop and Hassan (1964), Bearman (1984, 2011), Sarpkaya (1995, 2004), Jauvtis and Williamson (2004), Williamson and Govardhan (2004), Blevins (1990), Moe and Wu (1990), and Nakamura et al. (2013). Cylinder response is highly influenced by free stream velocity \(U_\infty \), natural frequency of the body \(f_N \), structural damping \(b \), and the mass of the body \(m \).

Vibrations due to vortex shedding are often modeled with 1DoF transverse-only motion. Khalak and Williamson (1999) investigated the VIV of a transversely oscillating cylinder and showed that the mass-damping parameter \(m \cdot \zeta \) strongly
influences the peak amplitude, where m^* is the mass ratio (the ratio of the mass of the vibrating body and that of the displaced fluid) and ζ is the structural damping coefficient. It was shown that at low $m^*\zeta$ three branches of cylinder response occur, namely initial, upper and lower branches, where the upper branch is associated with the highest oscillation amplitude. Feng (1968) studied high mass-damping cases where only two branches (an initial branch with low cylinder displacements and lower branch with high vibration amplitudes) are observed. Brika and Laneville (1993) and Govardhan and Williamson (2000) distinguished between the different branches based on their vortex-shedding modes. The initial branch is associated with 2S mode (two single vortices are shed in each motion cycle) while 2P mode (two vortex pairs shed in each motion cycle) belongs to the lower and upper branches. Brika and Laneville (1993) found that the transition between upper and lower branches is hysteretic and the flow is quite sensitive to incremental changes in the reduced velocity:

Klamo et al. (2006) investigated how the system transitions between two-branch and three-branch responses. In their study Reynolds number and the structural damping were varied. It was concluded that $m^*\zeta$ alone is insufficient to predict the type of response; Reynolds number is also an important influencing parameter. For small damping and high Re cases a three-branch response was observed, while a two-branch response was found for high damping and low Re cases.

Naturally, structures are not restricted to move only in one direction; in most cases two-degree of freedom (2DoF) oscillations are found. Jauvtis and Williamson (2004), using an elastically supported cylinder, kept the natural frequencies identical in two directions ($f_{Nx} = f_{Ny} = f_N$) and investigated a wide mass ratio range ($m^* < 25$) using an experimental approach. It was found that at high m^* cases ($m^* \approx 6–25$) in-line
oscillation has only a tiny effect on transverse vibration, which was also found by Zhou et al. (1999) at low Reynolds numbers using numerical techniques. Jauvtis and Williamson (2004) found that a three-branch response occurs, as in 1DoF cylinder oscillation. Upon decreasing the mass ratio below $m^*=6$ dramatic changes were observed. The existence of a super-upper branch was reported where the vortex-shedding mode was 2T type – two triple vortices shed in each vibration period.

However, in general, the natural frequencies in streamwise and transverse directions are not identical, $f_{Nx} \neq f_{Ny}$. Sarpkaya (1995) experimentally investigated 2DoF vortex-induced vibrations varying the natural frequency ratio f_{Nx}/f_{Ny} between 1 and 2. These results were compared with 1DoF cylinder oscillation results for $f_{Nx}=f_{Ny}$ and a 19% increase was observed in the transverse oscillation amplitude. In addition, two obvious peaks were identified at $f_{Nx}=2f_{Ny}$. Dahl et al. (2006) showed that by increasing the ratio of streamwise and transverse frequencies in the range of $f_{Nx}/f_{Ny}=1–1.9$, the phase angle between x and y component of the motion decreases and the peak amplitude shifts to higher reduced velocities $U^*=U_\infty/(f_{Ny}d)$, where f_{Ny} is the transverse natural frequency. Sanchis (2009) extended the frequency ratio range, where the natural frequency in transverse direction was greater than in streamwise direction ($f_{Nx}/f_{Ny}=0.42, 0.87$). The amplitude and frequency responses were very similar to those for $f_{Nx}/f_{Ny}=1$. The only difference was that the transition between upper and lower branch shifted from intermittency to lag. Kang et al. (2016) investigated three different circular cylinders with distinct aspect ratios ($L/D=6, 10.91$ and 24). It was shown that with high aspect ratios ($L/D=24$) different moving trajectories occur – D-shaped, egg-shaped, raindrop-shaped and figure-eight – but with sufficiently low aspect ratios (such as $L/D=6$) only figure-eight (or rather, distorted figure-eight) motion is found.
Most of the experimental studies are carried out at the medium range of Reynolds numbers (Re=10^3–10^4). Numerical studies at this regime are very limited because of the high computational cost; therefore, most computations are carried out for low Re. Govardhan and Williamson (2006) and Klamo et al. (2006) showed that besides the mass ratio and structural damping, Reynolds number also strongly influences the oscillation amplitude and fluid forces. Although Reynolds number and reduced velocity are not completely independent variables, it is convenient to investigate their effect separately. Leontini et al. (2006) investigated numerically the branching behavior of VIV at Re=200 with m*=10 and ζ=0.01 for transverse-only cylinder motion. A two-branch response was shown where the vortex-shedding mode was 2S in all cases investigated. At the reduced velocity range of U*=4.7–6.4 large amplitude oscillation occurs where positive and negative vortices coalesce. Using the notations introduced by Williamson and Roshko (1988), this vortex configuration is referred to as C(2S) mode.

Singh and Mittal (2005) carried out two sets of computations for 2DoF cylinder motion (1) at Re=100 with varying U* and (2) at U*=4.92 and varying Re. A two-branch cylinder response was identified with the maximum dimensionless transverse oscillation amplitude of y0max≅0.6. In the first set of computations 2S vortex configuration was observed. For high amplitude transverse oscillations, C(2S) mode was presented, similar to the results obtained by Leontini et al. (2006). The transition at the lower and higher end of the flow is hysteretic. (This was also found by Brika and Laneville (1993) at medium Reynolds numbers for transverse-only motion.) In the second case investigated by Singh and Mittal (2005), when the reduced velocity was fixed at U*=4.92 and Reynolds number was varied, 2S mode was observed below Re=300 and P+S mode above Re=300.
There are a few numerical studies dealing with constant natural frequencies. In this case a linear function exists between Reynolds number and reduced velocity (\(Re=KU^*\), where \(K=fNd^2/\nu\)). Willden and Graham (2006) carried out a numerical study for \(Re=20U^*\) in which the body was restricted to move only in transverse direction. The flow characteristics are investigated for five different mass ratios of \(m^*=1, 2, 5, 10, 50\). Primary, secondary and tertiary responses were identified. The primary response occurred around lock-in, which is always associated with vortex-induced vibration. The secondary response is found to occur only for high mass ratios \((m^*>5)\) and in the tertiary response regime an approximately constant oscillation amplitude can be maintained. Bahmani and Akbari (2010) investigated numerically the separate effects of mass ratio and structural damping for \(Re=17.9U^*\) considering 1DoF cylinder motion. It was found that increasing \(m^*\) or \(\zeta\) has almost the same effect: both the oscillation amplitude and the lock-in domain decrease.

In the following numerical studies carried out for 2DoF cylinder motion, the natural frequencies in both streamwise and transverse direction are identical \((f_{Nx}=f_{Ny}=f_N=\text{const.})\). Prasanth et al. (2006) carried out two sets of computations: (1) at fixed \(U^*=4.92\) with varying \(Re\) and (2) with constant natural frequencies where both Reynolds number and reduced velocity was varied using \(Re=16.6U^*\). Hysteretic loops were also found at the lower and higher end of lock-in. It was shown that by reducing the blockage ratio \(B\) (the ratio of cylinder diameter and the height of the computational domain) to \(B=1\%\), hysteresis loops disappear. Prasanth and Mittal (2008) investigated additional blockage ratios (using \(Re=16.6U^*\)) and concluded that as the blockage is reduced, the size of hysteresis loops decreases and hysteresis completely disappears at \(B=2.5\%\). The phase shift between lift coefficient and transverse cylinder displacement...
jumps abruptly from 0° to 180° at Re=110. Decomposing the total lift into two components of pressure lift and viscous lift, the authors concluded that the jump is caused by the pressure lift, since the viscous lift remains in phase with the cylinder motion in all of the investigated Re cases.

Mittal and Singh (2005) investigated mainly subcritical Reynolds numbers (Re < 47), where Re was varied with the reduced velocity (Re=3.1875 U*). They found that self-excited motion occurs as low as Re≅20, which is a steady-state regime for a stationary cylinder. At low mass ratio (m*=4.73) the dimensionless vortex shedding frequency St does not agree with reduced natural frequency, which was observed also by Williamson and Govardhan (2004). However, when increasing the mass ratio to m*=50, St and F_N curves almost overlap. At Re=33, F_N is approximately identical to St and the oscillation amplitude was low compared to the Re=25 case, where F_N > St and the vibration amplitude was high. The reason is that at Re=33 the lift force and transverse displacement are in antiphase, therefore the energy transferred between the moving cylinder and the fluid is low compared to that of the Re=25 case, where lift and transverse displacement are in phase, meaning that the mechanical energy transfer is higher.

The present numerical study deals with low-Reynolds-number flow around a circular cylinder free to vibrate in both streamwise and transverse directions. The mass ratio is fixed at m*=10 and the structural damping coefficient is set to zero. As can be seen from the literature review, only low natural frequency values have been investigated for 1DoF and 2DoF free vibrations (the coefficient between Reynolds number and reduced velocity K is in the range of 3–20 only). Systematic computations are carried out for constant natural frequencies agreeing with the vortex shedding
frequency for a stationary cylinder at the Reynolds number of Re_0. To the best knowledge of the authors, most of the articles investigating the 2DoF cylinder motion are dealing with $Re_0=100$ and systematic computations analyzing the effect of Re_0 have not yet been carried out. The aim of this paper is to expand the Re_0 (and with this the natural frequency) domain by investigating the flow characteristics at $Re_0=80, 100, 140$ and 180. Cylinder response, aerodynamic force coefficients, cylinder path and phase angle between the x component of the motion and the total drag, pressure drag and viscous drag coefficients are investigated in this study.

The outline of the current paper is as follows. In Section 2 the governing equations, the boundary and initial conditions are introduced and the computational methodology are presented. In Section 3, first, the independence studies are detailed and then the results obtained here are compared with those in the literature. Finally, Section 4 shows the new computational results and in Section 5 conclusions are drawn.

Nomenclature

- b damping [kg/s]
- CCW counterclockwise orbit on the upper loop of figure-eight
- C_D total drag coefficient, $2F_D/(\rho U_\infty^2 d)$ [-]
- C_{Dp} pressure drag coefficient [-]
- C_{Dv} viscous drag coefficient [-]
- C_L total lift coefficient, $2F_L/(\rho U_\infty^2 d)$ [-]
- C_{Lp} pressure lift coefficient [-]
- C_{Lv} viscous lift coefficient [-]
- CW clockwise orbit on the upper loop of figure-eight
\(d \) cylinder diameter, length scale [m]

\(D \) dilation, non-dimensionalized by \(U_\infty/d \)

DoF degrees of freedom

\(F_D \) drag per unit length of the cylinder [N/m]

\(F_L \) lift per unit length of the cylinder [N/m]

\(F_N \) reduced natural frequency, \(f_N d/U_\infty \) [-]

\(f_{x,y}^* \) oscillation frequency in \(x \) or \(y \) directions, respectively, non-dimensionalized by \(d/U_\infty \)

\(f_N \) natural frequency of the cylinder [1/s]

\(f_v \) natural frequency of the cylinder [1/s] \(k \) spring constant [kg/s²]

\(K \) coefficient between Reynolds number and reduced velocity for constant natural frequencies, \(f_N d^2/\nu \) [-]

\(m \) cylinder mass per unit length [kg/m]

\(m^* \) mass ratio, \(4m/(d^2 \pi \rho) \) [-]

\(p \) pressure, non-dimensionalized by \(\rho U_\infty^2 \)

\(R \) radius, non-dimensionalized by \(d \)

rms root-mean-square value

\(\text{Re} \) Reynolds number, \(U_\infty d/\nu \) [-]

\(\text{St} \) dimensionless vortex shedding frequency, Strouhal number, \(f_d U_\infty \)

\(\text{St}_0 \) dimensionless vortex shedding frequency for a stationary cylinder at Reynolds number \(\text{Re}_0 \)

\(t \) time, non-dimensionalized by \(d/U_\infty \)

\(u, v \) velocities in \(x \) and \(y \) directions, non-dimensionalized by \(U_\infty \)

\(U_\infty \) free stream velocity, velocity scale [m/s]
U*
reduced velocity, \(U_{\infty}/(f_0d) \) [-]

\(x, y \)
Cartesian coordinates, non-dimensionalized by \(d \)

\(x_0, y_0 \)
cylinder displacement in \(x \) and \(y \) directions, non-dimensionalized by \(d \)

\(\zeta \)
structural damping coefficient, \(b/(2\sqrt{mk}) \) [-]

\(\Theta \)
phase angle between streamwise and transverse components of the cylinder motion [-]

\(\nu \)
kinematic viscosity of the fluid [\(\text{m}^2/\text{s} \)]

\(\xi_{\text{max}}, \eta_{\text{max}} \)
number of grid points in peripheral and radial direction, respectively

\(\rho \)
fluid density [\(\text{kg/m}^3 \)]

\(\Phi \)
phase angle between \(x_0 \) and \(C_D \) [-]

\(\Phi_p \)
phase angle between \(x_0 \) and \(C_{Dp} \) [-]

\(\Phi_v \)
phase angle between \(x_0 \) and \(C_{Dv} \) [-]

Subscripts:

\(L \)
\text{lift}

\(D \)
\text{drag}

\(\text{max} \)
maximum value

\(\text{rms} \)
root-mean-square value

\(n \)
component in the direction normal to the cylinder surface

\(\text{pot} \)
potential flow

\(1, 2 \)
on the cylinder surface, at the outer boundary of the domain

\(0 \)
refers to cylinder response \((x_0, y_0)\) or to a stationary cylinder \((\text{Re}_0, \text{St}_0)\)

2. **Governing equations and computational method**
In this study two-dimensional constant property incompressible Newtonian fluid flow around a circular cylinder undergoing two-degree-of-freedom (2DoF) free vibration is investigated. The non-dimensional governing equations for this problem are the two components of the Navier-Stokes equations written in a non-inertial system fixed to the moving cylinder, the continuity equation and the pressure Poisson equation. These equations in primitive variables are written as follows:

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{1}{\text{Re}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{d^2 x_0}{dt^2},
\]

\[
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{\partial p}{\partial y} + \frac{1}{\text{Re}} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \frac{d^2 y_0}{dt^2},
\]

\[
D = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,
\]

\[
\nabla^2 p = 2 \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \right) - \frac{\partial D}{\partial t}.
\]

In these equations \(u, v \) are the non-dimensional velocity components in \(x \) and \(y \) directions, \(t \) is the non-dimensional time, \(p \) is the dimensionless pressure, \(d^2 x_0/dt^2 \) and \(d^2 y_0/dt^2 \) are the non-dimensional streamwise and transverse acceleration components of the cylinder, and \(D \) is the dilation. In Eqs. (1) and (2) \(\text{Re}=U_\infty d/\nu \) is the Reynolds number, where \(U_\infty \) is the free stream velocity, \(d \) is the cylinder diameter, and \(\nu \) is the kinematic viscosity of the fluid. Although dilation is zero for incompressible fluids, in Eq. (4) \(\partial D/\partial t \) is kept to avoid numerical inaccuracies (Harlow and Welch, 1965).

Figure 1 shows the layout of the computations. The figure shows a circular cylinder with a dimensionless radius \(R_1 \) and with mass per unit length \(m \) placed into a uniform free stream with velocity \(U_\infty \). The outer boundary of the physical domain, where the flow is assumed to be undisturbed, is represented by dimensionless radius \(R_2 \). The rigid cylinder is elastically supported in both streamwise and transverse directions. In this
study springs are supposed to be linear and the spring constants are chosen to be identical in the two directions \((k_x=k_y=k)\), as are the damping values \((b_x=b_y=b)\).

The non-dimensional structural equations that are used to determine the cylinder displacements \(x_0, y_0\) (Khalak and Williamson, 1999) are written as follows

\[
\ddot{x}_0 + \frac{4\pi \zeta}{U^*} \dot{x}_0 + \left(\frac{4\pi}{U^*}\right)^2 x_0 = \frac{2C_D(t)}{\pi m^*}, \tag{5}
\]

\[
\ddot{y}_0 + \frac{4\pi \zeta}{U^*} \dot{y}_0 + \left(\frac{4\pi}{U^*}\right)^2 y_0 = \frac{2C_L(t)}{\pi m^*}, \tag{6}
\]

where dots and double dots mean first and second time derivatives. In these equations \(x_0, \dot{x}_0, \ddot{x}_0\) are the dimensionless streamwise displacement, velocity and acceleration of the cylinder, respectively, and \(y_0, \dot{y}_0, \ddot{y}_0\) are the same quantities for the transverse direction. In Eqs. (5) and (6) \(m^* = 4m/(d^2 \rho)\) is the mass ratio, where \(\rho\) is the fluid density.
density; \(U^* = U_\infty / (f_N d) \) is the reduced velocity, where \(f_N \) is the natural frequency of the cylinder and \(\zeta = b / (2 \sqrt{km}) \) is the structural damping coefficient. The lift and drag coefficients are defined as

\[
C_L = \frac{2F_L}{\rho U_\infty^2 d'}, \quad C_D = \frac{2F_D}{\rho U_\infty^2 d'}
\]

where \(F_L \) and \(F_D \) are the dimensional lift and drag forces per unit length, which are computed from the pressure and shear stress distributions on the cylinder surface.

Therefore \(C_L \) and \(C_D \) can be divided into two parts:

\[
C_L = C_{Lp} + C_{Lv}, \quad C_D = C_{Dp} + C_{Dv},
\]

where subscripts \(p \) and \(v \) refer to pressure and viscous parts, respectively. The boundary conditions are written as follows:

Cylinder surface (\(R_1 \)):

\[
u = 0, \quad u = \frac{1}{Re} \nabla^2 v_n - \ddot{x}_0 n - \ddot{y}_0 n,
\]

Outer surface (\(R_2 \)):

\[
u = u_{pot} - \dot{x}_0, \quad v = v_{pot} - \dot{y}_0,
\]

where subscript \(n \) refers to the outer normal of the circular cylinder. On the cylinder surface (\(R=R_1 \)) no-slip boundary conditions are applied to the two velocity components \(u, v \) and Neumann-type boundary condition is used for pressure \(p \). Potential flow (referred to as subscript ‘pot’ in Eq. (13)) is assumed in the far field (\(R_2=160R_1 \)); it has been shown that this simplification causes only a small distortion in the velocity fields (Baranyi, 2008; Posdziech and Grundman, 2007. Initial conditions for the cylinder displacement and velocity are chosen to be:

\[
x_0(t = 0) = y_0(t = 0) = 0, \quad \dot{x}_0(t = 0) = \dot{y}_0(t = 0) = 0.
\]
Potential flow is assumed around the cylinder at \(t=0 \), hence force coefficients are
\(C_D(t=0) = C_L(t=0) = 0 \), which combined with Eqs. (5), (6) and (14) yields zero initial cylinder acceleration \(\ddot{x}_0(0) = \ddot{y}_0(0) = 0 \).

![Figure 2. The physical and computational domains](image)

In this study boundary-fitted coordinates are used in order to impose boundary conditions accurately. The physical domain is mapped into a rectangular computational domain (see Fig. 2) applying linear mapping functions (Baranyi, 2008). Due to the properties of the mapping functions, the computational grid on the physical domain is very fine in the vicinity of the cylinder and coarse in the far field, but the grid is equidistant in the computational domain. The transformed governing equations with the transformed boundary and initial conditions are solved using an in-house code based on the finite difference method (Baranyi, 2008). Space derivatives are approximated using fourth-order difference schemes, except for the convective terms where third-order modified upwind difference scheme was applied (Kawamura et al., 1986). The equations of motion and structural equations are integrated explicitly, pressure Poisson
equation is solved using successive over-relaxation (SOR) method, and the continuity equation is satisfied in each time step.

3. Validation procedure

In this section, results of independence studies used to determine the optimal combination of computational parameters are shown. Using this set of parameters, the obtained stationary and elastically supported cylinder results are compared with those available in the literature.

3.1 Independence studies

Radius ratio R_2/R_1, grid resolution $\xi_{\text{max}} \times \eta_{\text{max}}$ (grid points in the peripheral and radial direction, respectively), and dimensionless time step Δt characterize the computational setup. Independence studies have to be carried out in order to find the optimal combination of the parameters, which is the best compromise between high accuracy and computational cost. During these investigations Reynolds number and reduced velocity are set to be constant values: $Re=150$ and $U^*=5.8837$. Root-mean-square (rms) values of the dimensionless streamwise, transverse displacements, and lift and drag coefficients are presented.

For investigating the effect of the radius ratio, the number of grid points around the cylinder surface is fixed at $\xi_{\text{max}}=360$ and the dimensionless time step is kept at $\Delta t=0.0005$. Three radius ratio values are considered: $R_2/R_1=120$, 160 and 200. In order to make the grid equidistant in the computational domain the number of grid points in the radial direction belonging to the three radius ratio values are chosen to be $\eta_{\text{max}}=274$, 291 and 304. The results are given in Table 1. The relative difference between x_{0rms}, y_{0rms}, C_{Drms} obtained from the results for $R_2/R_1=120$ and those for $R_2/R_1=200$ is less than 0.7%. However, the relative difference between the values at the radius ratio $R_2/R_1=160$
and 200 decreases to 0.15% or below. C_{Lrms} shows higher differences but the corresponding value is less than 1% for $R_2/R_1=160$ and 200. Hence, the radius ratio of 160 seems to be appropriate for the computations.

Table 1. Effect of radius ratio R_2/R_1 on the cylinder response and force coefficients for Re=150 and $U^*=5.8837$

<table>
<thead>
<tr>
<th>R_2/R_1</th>
<th>x_{0rms}</th>
<th>y_{0rms}</th>
<th>C_{Drms}</th>
<th>C_{Lrms}</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>0.004582</td>
<td>0.3603</td>
<td>0.2433</td>
<td>0.06760</td>
</tr>
<tr>
<td>160</td>
<td>0.004601</td>
<td>0.3608</td>
<td>0.2443</td>
<td>0.06851</td>
</tr>
<tr>
<td>200</td>
<td>0.004613</td>
<td>0.3612</td>
<td>0.2449</td>
<td>0.06912</td>
</tr>
</tbody>
</table>

For the investigation of grid independence, the number of peripheral points is chosen to be $\xi_{max}=300$, 360 and 420 while the radius ratio and dimensionless time step are fixed at $R_2/R_1=160$ and $\Delta t=0.0005$, respectively. In order to generate an equidistant grid on the computational domain, η_{max} is chosen to be $\eta_{max}=242$, 291 and 339. Results are shown in Table 2. The highest relative differences are observed in C_{Lrms}: 0.65% and 0.18% between the results for $\xi_{max}=300$ and 420 and for 360 and 420, respectively. In the values of x_{0rms} and C_{Drms}, the relative difference for $\xi_{max}=300$ and 420 is approximately 0.32%, which decreases to 0.09% for $\xi_{max}=360$ and 420. y_{0rms} shows the least relative differences, which are 0.15% and 0.04% for the coarsest and the medium grid resolution, respectively.

Table 2. Grid dependence study for Re=150 and $U^*=5.8837$
Finally, the effect of dimensionless time step is studied. The grid and radius ratio are fixed at 360×291 and $R_3/R_1=160$, respectively. For this investigation computations are carried out for the dimensionless time step values of 0.001 (Δt_1), 0.0005 (Δt_2) and 0.00025 (Δt_3). Here also, $C_{L_{rms}}$ shows the highest relative differences: 1.4% for Δt_1 and Δt_3 and 0.5% for Δt_2 and Δt_3. In the values of $x_{0_{rms}}$ and $C_{D_{rms}}$ the corresponding difference is around 0.3% for Δt_1 and 0.09% for Δt_2. As was observed in the grid dependence study, the relative difference is the least for $y_{0_{rms}}$: 0.1% for Δt_1 and 0.03% for Δt_2. Thus, the time-step value of $\Delta t=0.0005$ seems to be adequate for further computations.

<table>
<thead>
<tr>
<th>ξ_{max}</th>
<th>$x_{0_{rms}}$</th>
<th>$y_{0_{rms}}$</th>
<th>$C_{D_{rms}}$</th>
<th>$C_{L_{rms}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0.004612</td>
<td>0.3612</td>
<td>0.2449</td>
<td>0.06874</td>
</tr>
<tr>
<td>360</td>
<td>0.004601</td>
<td>0.3608</td>
<td>0.2443</td>
<td>0.06841</td>
</tr>
<tr>
<td>420</td>
<td>0.004597</td>
<td>0.3607</td>
<td>0.2441</td>
<td>0.06829</td>
</tr>
</tbody>
</table>

Table 3. Effect of dimensionless time step Δt on the cylinder response and force coefficients for $Re=150$ and $U^*=5.8837$

<table>
<thead>
<tr>
<th>Δt</th>
<th>$x_{0_{rms}}$</th>
<th>$y_{0_{rms}}$</th>
<th>$C_{D_{rms}}$</th>
<th>$C_{L_{rms}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.004592</td>
<td>0.3606</td>
<td>0.2438</td>
<td>0.06781</td>
</tr>
<tr>
<td>0.0005</td>
<td>0.004601</td>
<td>0.3608</td>
<td>0.2443</td>
<td>0.06841</td>
</tr>
<tr>
<td>0.00025</td>
<td>0.004606</td>
<td>0.3610</td>
<td>0.2445</td>
<td>0.06875</td>
</tr>
</tbody>
</table>

3.2 Code validation for stationary and elastically supported cylinders
The in-house code applied for the computations has been extensively tested in order to prove its accuracy (see e.g. Baranyi, 2008). For further testing, first, the flow around a stationary cylinder is investigated. Reynolds number was varied in the range of Re=80–180, where the flow is two-dimensional (Barkley and Henderson, 1999) and periodic vortex shedding occurs. In Fig. 3a rms values of lift coefficient $C_{L_{rms}}$ are shown against Re. Good agreement is found between our results and those of Baranyi and Lewis (2006) and Golani and Dhiman (2014). The variation of Strouhal number St_0 – which is the dimensionless vortex shedding frequency for a stationary cylinder – is shown in Fig. 3b. As can be seen, the current results compare well with the numerical studies of Silva et al. (2003), Baranyi and Lewis (2006), and Posdziech and Grundman (2007) and with the experimental studies of Norberg (2003).

![Graphs](image)

Figure 3. Results for stationary cylinders: root-mean square value of lift coefficient (a) and dimensionless vortex shedding frequency (b) compared to published results

Computational results for a freely vibrating cylinder in 2DoF are shown in Fig. 4. Prasanth and Mittal (2008) and He and Zhang (2016) carried out computations where
the natural frequency was kept at a constant value, which agreed with the vortex-shedding frequency for a stationary cylinder at Reynolds number $Re_0=100$. In this case the relationship between Re and U^* is $Re=16.6U^*$. The mass ratio was fixed at $m^*=10$ and the structural damping coefficient was set to zero ($\zeta=0$). In Fig. 4 rms values of transverse and streamwise displacements are shown against Re. The agreement between the current results and those obtained by Prasanth and Mittal (2008) and He and Zhang (2016) is excellent except for the lower and higher threshold of flow synchronization. At the vicinity of $Re=90$ and 130 the flow is very sensitive to changes in the Reynolds number (and also in the reduced velocity), which explains the higher discrepancies between the results.

Figure 4. Elastically supported cylinder results: root-mean-square value of transverse (a) and streamwise displacement (b) of the cylinder compared to Prasanth and Mittal (2008) and He and Zhang (2016)

Reassuringly, 2S vortex shedding mode occurs for low transverse oscillation amplitude cases (e.g. at the initial branch) and C(2S) mode of vortex shedding is
observed for high transverse cylinder displacements, similar to results obtained by Prasanth and Mittal (2008) and He and Zhang (2016).

4. Results and discussion

In this study, flow around a circular cylinder undergoing two-degrees-of-freedom free vibration is investigated. The mass ratio is fixed at $m^*=10$ and the structural damping is chosen to be zero ($\zeta=0$) to ensure high amplitude cylinder displacement. As mentioned in Section 1, Reynolds number and reduced velocity are not independent parameters. If the natural frequency of the oscillating cylinder f_N is constant, the relationship between Re and U^* is linear, $Re=KU^*$ where $K=f_ND^2/\nu=\text{const}$ (Mittal and Singh, 2005).

Assuming that the reduced natural frequency $F_N=1/U^*$ is identical to the Strouhal number for a stationary cylinder St_0 at Reynolds number Re_0, K can be determined as $K=Re_0 St_0$.

It was found in the literature review that earlier investigations had been limited to low natural frequency values. For 2DoF motion only $Re_0=100$ was investigated (Prasanth and Mittal, 2008). In order to fill this gap, systematic computations are carried out for four different Re_0 values, St_0, Re_0, and the computed K values are given in Table 4.

Table 4. Dimensionless vortex shedding frequencies for stationary cylinder St_0 and the computed constant values K for different Reynolds numbers Re_0.

<table>
<thead>
<tr>
<th>Re_0</th>
<th>St_0</th>
<th>$K=Re_0 St_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.1543</td>
<td>12.344</td>
</tr>
<tr>
<td>100</td>
<td>0.166</td>
<td>16.60</td>
</tr>
<tr>
<td>140</td>
<td>0.1821</td>
<td>25.494</td>
</tr>
</tbody>
</table>
4.1. Cylinder response and aerodynamic force coefficients

The root-mean-square (rms) values of the transverse cylinder displacement y_{0rms} for the investigated Re_0 are shown in Fig. 5. As can be seen, the cylinder response for a given Re_0 value consists of three different regimes. At the initial branch the cylinder oscillation amplitude is low – in both streamwise and transverse directions – and the transverse vibration frequency f_0^* is approximately equal to the dimensionless vortex-shedding frequency for a stationary cylinder St_0. In Fig. 6 the variation of St_0, F_N and f_0^* is shown for $Re_0=140$, where $f_0^* \approx St_0$ at the initial branch can be clearly seen. With increasing Re and U^*, cylinder response switches to the lower branch, where the oscillation frequency synchronizes with the natural frequency of the cylinder, resulting in high amplitude oscillations. Beyond the lock-in domain, the oscillation amplitude becomes small again and f_0^* locks in to St_0, as was observed in the initial branch.
Figure 5. Root-mean-square values of transverse cylinder displacement y_{0rms} against Re for $Re_0=80, 100, 140, 180$

![Graph showing root-mean-square values of transverse cylinder displacement against Re.]

Figure 6. Dimensionless transverse vibration frequency for $Re_0=140$, dimensionless vortex-shedding frequency for stationary cylinder St_0 (Posdziech and Grundmann, 2007) and reduced natural frequency F_N against Re

The Reynolds number range in which the oscillation frequency synchronizes with the natural frequency, i.e. lock-in, strongly depends on Re_0 (see Fig. 5), therefore comparison of data is difficult. Khalak and Williamson (1999) showed that the cylinder responses for different mass-damping parameters $m^*\zeta$ can collapse into a single curve by using ‘true’ reduced velocity (U^*/f^*, where f^* is the ratio of the transverse oscillation frequency and the natural frequency of the cylinder) as an independent variable instead of reduced velocity. Due to $\zeta=0$, mass damping parameter is zero in all the cases investigated in this study. Singh and Mittal (2005) used U^*St_0 as an independent variable for the cases where either Re or U^* was kept constant. Using the definitions of reduced velocity and Strouhal number, it can be seen that U^*St_0 is the ratio of the
vortex-shedding frequency for a stationary cylinder f_v and the natural frequency of the oscillating body f_N ($U^*St_0 = \frac{U_{\infty} f_v d}{f_N u_{\infty}} = \frac{f_v}{f_N}$). To the best knowledge of the authors, U^*St_0 has not previously been applied as an independent variable for constant natural frequency cases. However, it can be seen in Fig. 7 that by plotting y_{0rms} against U^*St_0 the curves belonging to different Re_0 values can be represented in the same range.

Strouhal number values in the range of $Re=50–250$ are obtained from Posdziech and Grundmann (2007). As can be seen in Fig. 7, the curves shift to higher y_{0rms} with increasing Re_0. A larger difference in y_{0rms} values is found between $Re_0=80$ and 100 than between $Re_0=140–180$. It can also be seen that the lower branch is significantly wider for lower Re_0 values. Previous researchers (e.g. Prasanth and Mittal, 2008) showed that in the transition between the initial and the lower branch – where the oscillation amplitude varies strongly – the flow is chaotic. The width of this transition range also depends on Re_0. In the case of $Re_0=80$ and 100 y_{0rms} jumps abruptly between the two branches, in contrast to $Re_0=140$ and 180, where the rms value of the transverse vibration component changes gradually.
Figure 7. Root-mean-square value of transverse cylinder displacement against U^*St_0 for $Re_0=80, 100, 140, 180$

In Fig. 8 the rms of lift coefficient C_{Lrms} is plotted against U^*St_0. It can be seen that in the initial branch and beyond the lower branch C_{Lrms} shifts to higher values with increasing Re_0. Besides, at the transition regime between initial and lower branches C_{Lrms} increases significantly up to a peak value which increases with Re_0. In the lower branch C_{Lrms} drops to a near-zero value.

![Graph showing C_{Lrms} against U^*St_0 for $Re_0=80, 100, 140, 180$.]

Figure 8. Root-mean-square value of lift coefficient against U^*St_0 for $Re_0=80, 100, 140, 180$

In Figs. 9 and 10 the rms value of the streamwise displacement x_{0rms} and drag coefficient C_{Drms} are shown against U^*St_0. As expected, the amplitude of oscillation in streamwise direction is significantly smaller than that in transverse direction. Similar characteristics are observed, as were seen for y_{0rms} in Fig. 7: the curves belonging to increasing Re_0 shift to higher values for both x_{0rms} and C_{Drms}. On the other hand, the rms values of streamwise cylinder displacement show an increase in the range of $U^*St_0=0.4–0.65$, which becomes more significant for higher Re_0 (see Fig. 9). C_{Drms}
shows similar behavior (Fig. 10) but the difference is less than that observed in $x_{0\text{rms}}$. Note that this phenomenon is not observed for $Re_0=80$ because the flow is steady below $U^*St_0 \approx 0.5$.

Figure 9. Root-mean-square value of streamwise cylinder displacement against U^*St_0 for $Re_0=80$, 100, 140, 180

Figure 10. Root-mean-square value of drag coefficient against U^*St_0 for $Re_0=80$, 100, 140, 180
In Fig. 11 the domain $U^*S_0=0.4–0.65$ is shown at higher resolution. It can be seen that $x_{0\text{rms}}$ increases continuously until it reaches its local maximum value at around $U^*S_0\sim 0.47$ (see Fig. 11a). As expected, with decreasing Re_0 the peak value diminishes, and almost disappears at $Re_0=100$. In addition to the peak, a local minimum point is identified for C_{Drms} at $U^*S_0\approx 0.5$ where it approaches zero (see Fig. 11b). After the local minimum point C_{Drms} starts to increase, with the slope of the curve increasing with Re_0. To check the significance of the local maximum values of $x_{0\text{rms}}$ and C_{Drms} and local minimum values of C_{Drms}, the domain $U^*S_0=0.4–0.65$ is further investigated.

![Figure 11](image.png)

Figure 11. Root-mean-square value of streamwise cylinder displacement (a) and drag coefficient (b) against U^*S_0 (zoom-in) for $Re_0=100, 140, 180$

4.2. Investigating the vicinity of $U^*S_0=0.5$

In order to investigate the significance of local maximum points identified in $x_{0\text{rms}}$ and C_{Drms} and local minimum point found in C_{Drms}, the phase angle Φ between x_0 and C_D is computed. Figure 12 shows C_{Drms} against U^*S_0 for $Re_0=180$ (Fig. 12c) and time
histories of drag coefficient and streamwise cylinder displacement (Fig. 12a, b, d, e) for different U^*St_0 values. It can be seen in the figure that there is an irregular change in the phase difference between x_0 and C_D at around $U^*St_0=0.5$. At $U^*St_0 < 0.5$ x_0 and C_D are in phase, so the phase angle between the signals is $\Phi\cong 0^\circ$ and in the vicinity of $U^*St_0=0.5$ (when $C_{D_{rms}}$ approaches zero) the phase angle jumps to $\Phi=180^\circ$.
Figure 12. Time histories of drag coefficient (blue triangular marker) and streamwise cylinder displacement (green circular marker) belonging to different $U^* St_0$ values.
The phase angle ϕ computed using Hilbert transformation is shown in Fig. 13 against U^*St_0 for the investigated Re_0 values. The jump in the phase between 0° and 180° can be clearly seen.

Figure 13. Phase angle between x_0 and C_D against U^*St_0 for $Re_0=100, 140, 180$

The total drag coefficient is composed of two parts: one is due to pressure C_{Dp} and another part originating from friction on the cylinder wall C_{Dv}, as stated by Eq. (9). The rms values of C_{Dp} and C_{Dv} in the range $U^*St_0=0.4–0.65$ show different behaviors, as can be seen in Fig. 14. Although both quantities have maximum and minimum values in this range, the variation of $C_{Dp,\text{rms}}$ is similar to $C_{Dv,\text{rms}}$ (Fig. 11b), while the change in $C_{Dv,\text{rms}}$ is similar to the characteristics of $x_{0,\text{rms}}$ (Fig. 11a).
Figure 14. Root-mean-square values of drag due to pressure (a) and drag due to viscosity (b) against U^*St_0 for $Re_0=100$, 140, 180.

For this reason Φ_v (phase angle between C_{Dv} and x_0) and Φ_p (phase angle between C_{Dp} and x_0) are computed and shown for the investigated Re_0 values in Fig. 15. As expected, the changes in Φ_v and Φ_p are different. In the range of $U^*St_0 \approx 0.4–0.5$ there is a $\Phi_v \approx 35^\circ$ phase shift between C_{Dv} and x_0. After this period Φ_v changes gradually until it reaches approximately 180° (see Fig. 15b). In contrast, C_{Dp} and x_0 are approximately in phase between $U^*St_0=0.4$ and 0.5, while in the vicinity of $U^*St_0=0.5$ the phase angle changes abruptly to $\Phi_p=180^\circ$ (see Fig. 15a).

The tendencies of Φ_p and Φ are very similar (see Figs. 15a and 13), therefore pressure distribution around the cylinder surface influences the flow structure more strongly than friction does. This behavior is similar to that observed by Prasanth and Mittal (2008) for $Re_0=100$, who found an abrupt jump in the phase between the lift coefficient and transverse displacement from $\Phi=0^\circ$ to 180° (between $Re=110$ and 115). Decomposing lift into pressure lift C_{Lp} and viscous lift C_{Lv} they showed that the pressure...
component is responsible for the jump, since the viscous component remains in phase with the displacement.

![Figure 15](image)
(a) ϕ_p
(b) ϕ_v

Figure 15. Phase angle values Φ_v (a) and Φ_p (b) against $U^{*}St_0$ for $Re_0=100, 140, 180$

In Fig. 16 limit cycle curves (time histories of viscous drag versus those of pressure drag) are shown for the vicinity of $U^{*}St_0=0.5$ for $Re_0=140$. It can be seen that below $U^{*}St_0<0.4904$ the orientation of the curves is clockwise, indicated by filled arrows (see Fig. 16). At $U^{*}St_0>0.4904$ the orientation switches abruptly to counterclockwise direction (shown by empty arrows in Fig. 16), which means that pressure and viscous drag become nearly antiphase. This substantial change is mainly caused by pressure drag, since Φ_v increases gradually in this regime (Fig. 15b) in contrast to Φ_p, which jumps abruptly between $\Phi_p=0^\circ$ and 180° at around $U^{*}St_0=0.5$ (Fig. 15a). The amplitudes of signals C_{D_p} and C_{D_v} (not shown here) are almost identical in the vicinity of $U^{*}St_0=0.5$. These two features (antiphase and equal signal amplitudes) nearly cancel each other out, resulting in an approximately zero value of $C_{D_{rms}}$ (shown in Fig. 11b).
Figure 16. Limit cycle curves (\(C_{Dv}, C_{Dp}\)) in the vicinity of \(U^*\text{St}_0=0.5\) for \(Re_0=140\)

The abrupt change in the limit cycle curves shown in Fig. 16 suggests that the path of the cylinder also changes strongly in this domain. Figure 17 shows the power spectra (FFT) of the \(x\) and \(y\) components of the cylinder displacement for \(U^*\text{St}_0=0.9246\) and \(Re_0=180\). The intensity value \(I\) on the vertical axis is normalized by its maximum value \(I_{max}\). It can be seen in the figure that the vibration frequency in the streamwise direction is double that in the transverse direction (\(f_x^*=2f_y^*\)), which is true for all of the investigated cases except in the chaotic flow regime.
These peak values result in a distorted figure-eight (or Lissajou curve) cylinder path that can be written mathematically as follows:

\[
x_0(t) = x_{0\text{max}} \cos(4\pi f_x^* t + \Theta),
\]

(15)

\[
y_0(t) = y_{0\text{max}} \sin(2\pi f_y^* t),
\]

(16)

where \(\Theta \) is the phase angle between \(x \) and \(y \) vibration components. Phase angle \(\Theta \) determines both the shape and the orientation of the moving trajectory. In case of \(\Theta > 0 \) the orbit is clockwise (CW) in the upper loop of the cylinder path, while with \(\Theta < 0 \) values counterclockwise (CCW) cylinder paths are obtained. Eqs. (15) and (16) do not satisfy in the transition regime between initial and lower branches, where the cylinder motion is not quasi-periodic. In Fig. 18 the direction of cylinder orbit is shown for CW (filled arrows) and CCW (empty arrows) for the intersection of a distorted figure-eight path.
Figure 18. Direction of cylinder orbit (CW – clockwise, CCW – counterclockwise) for a distorted figure-eight path

Phase angles between the two oscillation components are computed and plotted against U^*St_0 for the investigated Re_0 values in Fig. 19. It can be seen that CW cylinder motion occurs in the approximate range of $U^*St_0 = 0.4–0.5$ and CCW orbits are found above $U^*St_0 \approx 0.5$. It is obvious from the figure that Θ varies strongly at the vicinity of $U^*St_0 = 0.5$. In Fig. 20 cylinder trajectories are shown for various U^*St_0 values for $Re_0 = 180$. It can be seen that by increasing U^*St_0 the phase angle sharply decreases, approaching zero at $U^*St_0 \approx 0.487$ at the same value at which the local minimum value was identified in $C_{D_{rms}}$ (see also Fig. 11b).
Figure 19. Phase angle Θ between streamwise and transverse components of the motion for $Re_0=100$, 140, 180.

(a) $U^*St_0=0.455$ $\Theta=98.47^\circ$ (CW)
(b) $U^*St_0=0.48$ $\Theta=19.91^\circ$ (CW)
(c) $U^*St_0=0.486$ $\Theta=3.59^\circ$ (CW)
(d) $U^*St_0=0.505$ $\Theta=-17.87^\circ$ (CCW)

Figure 20. Cylinder path in the vicinity of $U^*St_0\approx 0.5$ for $Re_0=180$

5. Conclusions

The present study deals with the numerical simulation of low-Reynolds-number flow around an elastically supported circular cylinder free to move in two directions. The
mass ratio is fixed at $m^*=10$ and the structural damping coefficient is set to zero. The natural frequency of the structure f_N is kept at a constant value agreeing with the vortex shedding frequency from a stationary cylinder at Reynolds numbers $Re_0=80, 100, 140$ and 180. In order to keep f_N constant, both Re and reduced velocity U^* are varied.

The main findings are as follows:

- A two-branch cylinder response is observed, similarly to the previously published numerical and experimental results for low-Reynolds-number flows;
- The Reynolds number range where synchronization (or lock-in) takes place strongly depends on Re_0, making comparison of results belonging to different natural frequencies more difficult. By plotting the results belonging to different Re_0 against U^*St_0 the data series can be represented in the same range, making comparison easier;
- With increasing Re_0 the root-mean-square (rms) values of cylinder displacement and drag coefficient shift to higher values and the lock-in domain becomes narrower;
- In the initial branch local extreme values are observed in the rms of streamwise displacement (x_{rms}, maximum) and drag coefficient (C_{Drms}, maximum and minimum) in the range of $U^*St_0=0.4–0.65$;
- At $U^*St_0\approx 0.5$ C_{Drms} approaches zero. At this point the phase angle between streamwise displacement and drag coefficient changes abruptly from 0° to 180° (from in-phase to antiphase);
- Phase angles between the x component of the cylinder motion and pressure and viscous drag coefficients (Φ_p and Φ_v) are also computed. Although Φ_p shows a sudden shift between 0° and 180°, Φ_v gradually varies between $\Phi_v\approx 35°$ and
180°. This result indicates that pressure drag may be responsible for the abrupt phase change and switch in orientation of the cylinder path;

- Due to the abrupt change in Φ_p, the limit cycle curves (C_{Dv}, C_{Dp}) switch from clockwise to anticlockwise orientation in the vicinity of $U^*St_0=0.5$.

- The cylinder follows a distorted figure-eight path in all of the investigated cases except within the chaotic flow regime. The phase angle between x and y components of the motion is computed and used to identify the orientation of the path. It is found that at $U^*St_0\approx0.5$ the orientation of the cylinder path changes from a clockwise to a counterclockwise orbit.

It is seen from the current study that higher Re_0 values cause noticeable changes in x_{0rms} and C_{Drms}. We plan to investigate the effect of mass ratio (at the range of $m^*=0.1–25$) on the cylinder response for higher Re_0 values ($Re_0\geq180$).

Acknowledgements

This research was supported by the European Union and the Hungarian State, co-financed by the European Regional Development Fund in the framework of the GINOP-2.3.4-15-2016-00004 project, aimed to promote the cooperation between the higher education and the industry. The research was also supported by the EFOP-3.6.1-16-00011 “Younger and Renewing University – Innovative Knowledge City – institutional development of the University of Miskolc aiming at intelligent specialisation” project implemented in the framework of the Széchenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund.
References

Feng, C.C., 1968. The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders. Master thesis, University of British Columbia, Vancouver, B.C., Canada

Figure captions

Figure 1. Layout of the elastically supported cylinder

Figure 2. The physical and computational domains

Figure 3. Results for stationary cylinders: root-mean square value of lift coefficient (a) and dimensionless vortex shedding frequency (b) compared to published results

Figure 4. Elastically supported cylinder results: root-mean-square value of transverse (a) and streamwise displacement (b) of the cylinder compared to Prasanth and Mittal (2008) and He and Zhang (2016)

Figure 5. Root-mean-square values of transverse cylinder displacement y_{0rms} against Re for $Re_0=80, 100, 140, 180$

Figure 6. Dimensionless transverse vibration frequency for $Re_0=140$, dimensionless vortex-shedding frequency for stationary cylinder St_0 (Posdziech and Grundmann, 2007) and reduced natural frequency F_N against Re

Figure 7. Root-mean-square value of transverse cylinder displacement against U^*St_0 for $Re_0=80, 100, 140, 180$

Figure 8. Root-mean-square value of lift coefficient against U^*St_0 for $Re_0=80, 100, 140, 180$

Figure 9. Root-mean-square value of streamwise cylinder displacement against U^*St_0 for $Re_0=80, 100, 140, 180$

Figure 10. Root-mean-square value of drag coefficient against U^*St_0 for $Re_0=80, 100, 140, 180$

Figure 11. Root-mean-square value of streamwise cylinder displacement (a) and drag coefficient (b) against U^*St_0 (zoom-in) for $Re_0=100, 140, 180$
Figure 12. Time histories of drag coefficient (blue triangular marker) and streamwise cylinder displacement (green circular marker) belonging to different $U^* S_{0}$ values

Figure 13. Phase angle between x_0 and C_D against $U^* S_{0}$ for $Re_0=100, 140, 180$

Figure 14. Root-mean-square values of drag due to pressure (a) and drag due to viscosity (b) against $U^* S_{0}$ for $Re_0=100, 140, 180$

Figure 15. Phase angle values Φ_v (a) and Φ_p (b) against $U^* S_{0}$ for $Re_0=100, 140, 180$

Figure 16. Limit cycle curves (C_{Dv}, C_{Dp}) in the vicinity of $U^* S_{0}=0.5$ for $Re_0=140$

Figure 17. Power spectra of streamwise (a) and transverse (b) components of cylinder response for $U^* S_{0}=0.9246$ and $Re_0=180$

Figure 18. Direction of cylinder orbit (CW – clockwise, CCW – counterclockwise) for a distorted figure-eight path

Figure 19. Phase angle Θ between streamwise and transverse components of the motion for $Re_0=100, 140, 180$

Figure 20. Cylinder path in the vicinity of $U^* S_{0}=0.5$ for $Re_0=180$
Table captions

Table 1. Effect of radius ratio R_2/R_1 on the cylinder response and force coefficients for
Re=150 and $U^*=5.8837$

Table 2. Grid dependence study for Re=150 and $U^*=5.8837$

Table 3. Effect of dimensionless time step Δt on the cylinder response and force
coefficients for Re=150 and $U^*=5.8837$

Table 4. Dimensionless vortex shedding frequencies for stationary cylinder St_0 and the
computed constant values K for different Reynolds numbers Re$_0$