Sportolói állapotfelmérő tesztek eredményei és a sportsérülések közötti összefüggések vizsgálata utánpótlás labdarúgók körében

Konzulens: Kató Csaba
Készítette: Petrényi-Petrikné Szász Réka
2022
Tartalom

1. Bevezetés .. 3
 1.1 Statisztikai adatok feldolgozásának jelentősége a jelentősége sérülés-prevencióban ... 3

2. Szakirodalmi áttekintés .. 5
 2.1. TalentX Athlete Management System alkalmazása a DVTK Labdarúgó Sportakadémián ... 5
 2.2. Funkcionális mozgásminta szűrés .. 5
 2.3 CMJ teszt ... 7
 2.4 Mesterséges neurális hálózat ... 8
 2.5. Sportsérülések osztályozása ... 9
 2.5.1. Sérülések ismétlődése alapján ... 9
 2.5.2. Súlyosság foka szerint .. 9
 2.5.3. Sérülés mechanizmusa szerint ... 9
 2.5.4. Sérült képlet szövettani képe alapján .. 10

4. Anyag és módszer ... 13
 4.1. Anyag ... 13
 4.2. Módszer ... 13

5. Eredmények .. 14
 5.1 Funkcionális mozgásminta szűrés eredményei ... 14
 5.1.1 2021. év FMS eredményei .. 14
 5.1.2 2022. év FMS eredményei .. 16
 5.2 CMJ teszt eredményei .. 18
 5.3 Sérülések alakulása 2021-ben .. 19
 5.4 Összefüggés vizsgálatok .. 21
5.4.1 FMS eredményei és a nem kontakt sérülések közötti összefüggés vizsgálata.. 21
5.4.2 CMJ tesztek eredményei és a non-kontakt sérülések közötti összefüggések vizsgálata.. 22
5.4.3 FMS 2021-22. évi eredményeinek összehasonlítása Wilcoxon próbával 23
5.4.4 CMJ 2021. év januári és július eredményeinek összehasonlítása páros mintás T-próbával .. 24
5.4.5 Mesterséges neurális hálózat alkalmazása a non-kontakt sérülések előrejelzésére.. 25

6. Megbeszélés, következtetések .. 44
7. Összefoglalás ... 46
8. Irodalomjegyzék ... 47

Mellékletek ... 49
1. Bevezetés

1.1 Statisztikai adatok feldolgozásának jelentősége a jelentősége sérülésprevencióban

A labdarúgásban jellemző rendkívül összetett sportmozgások fokozott terhelést jelentenek a labdarúgók számára, mely jelentősen megnöveli a nem kontakt módon kialakuló sérülések kialakulásának esélyét. Ezért kiemelten fontos a sportolók fizikai állapotának folyamatos monitorozása, szűrővizsgálatok, állapotfelmérő tesztek alkalmazása, hogy az ezekből nyert mérési adatok feldolgozása által létrejöhessen

\(^1\) Mlsz: Grassroots bemutatkozás [Online]
egy adatalapú prevenció program a non-kontakt sportsérülések megelőzésére. Kutatásom célja megismerni a DVTK Labdarúgó Sportakadémia által alkalmazott sportolói állapotfelmérő teszteket, valamint a tesztek során kinyert adatok felhasználásával statisztikai elemzés készítése, külön kitérve az állapotfelmérő tesztek és a non-kontakt sérülések közötti összefüggések vizsgálatára az ifjúsági korosztályban.
2. Szakirodalmi áttekintés

2.1. TalentX Athlete Management System alkalmazása a DVTK Labdarúgó Sportakadémián

A DVTK Labdarúgó Sportakadémia 2021 szeptembere óta használja a TalentX informatikai és vállalatiirányítási rendszert, mely a sportszakmai adatok biztonságos tárolását, rendszerezését és különböző célú felhasználását jelentős mértékben megkönnyíti. A játékosok teljes profilja egy adatbázisban megtalálható. A teljesítménymonitoring az edzések és a mérkőzések során nyújtott teljesítmény rögzítésével és az eltárolt információk feldolgozásával, kielemzésével lehetőséget ad a gyors beavatkozásra. Az adatbázisban szereplő információk statisztikai elemzése segíti a döntésselőkészítést, prevenció programok kialakítását és a rehabilitáció során elért eredmények nyomon követésével a fizioterapeút munkáját. Tervezhetővé teszi az edzésmunkát és a mérkőzéseken való részvételt, az eseménynaptár segítségével a csapattagok és a teljes stáb programja előre tervezhető. Az adatbázis elemeinek áttekinthetősége megkönnyíti a szakmai ellenőrzést.2

2.2. Funkcionális mozgásminta szűrés

A nem kontakt sérülések kialakulásának hátterében nagy szerepet játszik a sportolókat érő rendszeres fokozott fizikai terhelés. Emiatt szükségessé vált a sportolók funkcionális állapotának monitorozása, a túlterhelésből adódó sérülések prevenciója céljából. A DVTK Labdarúgó Sportakadémia a Gray Cook által kifejlesztett nemzetközileg elismert Functional Movement Screen állapotfelmérő tesztet alkalmazza erre a célra.

Az FMS komplex vizsgálati módszer, mely összetett funkcionális mozgást vizsgál. Segítségével kiszűrhetőek azon stabilitási és mobilitási problémák, melyek idővel sérüléshez vezethetnek. Előnyei a sportolók számára a funkcionális deficitek kimutatásában, azok célzott fejlesztésében, a funkcionális teljesítmény fokozásában nyilvánulnak meg. A teszt elvégzése nem igényel hosszú időt és bonyolult technikai

2 TalentX AMS. Innovatív online platform akadémiák, sportegyesületek számára [Online]
felszereltséget. Segíti az edzői munkát a sportoló számára kialakított egyéni edzéstervb
elkészítésében, a rehabilitációt végző fizioterapeuták számára pedig értékes
információkat ad a sérülések körülményeiről.
A Funkcionális mozgásminta Szűrés hét egyszerű gyakorlat kivitelezésén keresztül
vizsgálja a stabilitást és mobilitást, valamint az aszimmetriákat. A mély guggolás,
akadály átlépés, kitörés, váll mobilitás, aktív nyújtott lábemelés, törzsstabilitás és
rotációs stabilitás a mozgáskészletünk legalapvetőbb, mindennapjainkban gyakran
használt elemeinek képezik az alapját.³
Az elvégzett gyakorlatok értékelése négyfokú skálán történik:
- 0 pont = a gyakorlat kivitelezése közben fájdalom lép fel
- 1 pont = nem tudja végrehajtani a feladatot
- 2 pont = a feladatot elvégzi ugyan, de kompenzációs mechanizmusokkal
- 3 pont = helyes technikai kivitelezés
Végül a részletes eredményekből a vizsgált személy egy összesített pontszámot kap.
Az eredmények kiértékelésénél azonban nem elegendő csupán az összesített
pontszám figyelembevétele, az egyes elemek kivitelezése során kimutatott deficitek
kijelölik a korrekciónra és fejlesztésre irányuló feladatokat. A vizsgált mozgásminták
egymással is összefüggést mutatnak, így például az aszimmetrikus mozgásminták
(átlépés, kitörés, vállmobilitás, aktív nyújtott lábemelés, törzsrotáció) hatással vannak
a szimmetrikus minták kivitelezésére (guggolás, fekvőtámasz). Az FMS alapvetően
az objektivitásra törekszik, azonban logikus felvetés az, hogy a mérésekben
szubjektív tényezők is szerepet játszanak a felmérést végző fizioterapeuta
személyében. Kraus és munkatársai az FMS megbízhatóságának kutatása során
kimutatták, hogy megfelelően képzett és tapasztalt szakember által végzett tesztek
biztonsággal alkalmazhatók a sérülés kockázatának előrejelzésében⁴ és javaslatokat
tettek arra nézve, hogy a szubjektivitásból eredő hibák miként küszöbölhetőek ki.

⁴ Kraus, K., [et al]: Efficacy of the Functional Movement Screen
2.3 CMJ teszt

A motoros képességek vizsgálatára alkalmazható ugrátesztek az erő és a gyorsaság kapcsolatát mérik. Több típusuk is ismert: squat jump (SJ) - guggolásból felugrás, countermovement jump (CMJ) - ellenmozgásos ugrás, depth/drop jump (DJ) - mélybeugrás, helyből távolugrás, és helyből végzett sorozatugrások. A DVTK utánpótlás labdarúgóinál a felugrátó tesztek közül a CMJ-t alkalmazzák a labdarúgók aktuális állapotának mérésére. A méréshez szükséges eszközök a súlypontemelkedés mérő, kontaktszőnyeg, vagy erőplató és egy szoftver, mely a mérési adatokat rögzíti és tárolja. Az erőplató a talajra kifejtett erőt méri, ez az elrugaszkodás ereje, melyet talaj-reakcióerőnek nevezünk, mértékegysége a newton (N). A sportakadémia Kistler 3D erőplatót és a hozzá kapcsolódó MARS - Measurement, Analysis & Reporting Software-t alkalmaz a mérések során. Mérési protokolljuk szerint a vizsgált személy bemelegítést követően áll az erőplatóra. (Más protokollok szerint bemelegítés nélkül is vizsgálható a CMJ). Megtörténik a testsúly mérése, majd arra kérik a vizsgált személyt, hogy előzetes lendületszerzésből (counter-movement) a lehető legmagasabbra ugorjon. Majd csípőre tett kézzel három CMJ ugrást végez a sportoló egy perces szünetekkel az ugrások között. A teszt más protokollok szerint a karok lendítésével is végezhető, ez növelni fogja az ugrások magasságát. A három ugrás közül a legnagyobb ugrásmagassággal rendelkezőnek az adatait veszik figyelembe. Az ugrásról videofelvétel is készíthető további elemzés céljából.

CMJ típusú ugrásnál a reaktív erőt mérik, mely „.....olyan erőkifejtési mód, ahol az erőkifejtés során az izmok először megnyúlnak, aktiv állapotban előfeszülnek, majd hirtelen megrövidülnek.” A CMJ ugrás hasonlít legnagyobb mértékben a mindennapi mozgásaink során használt ugrásokhoz. „Itt tehát a leérkezést követően egy azonnali felugrás következik, és a leérkezéskor a megnyúlt izmokban kiváltódik a nyújtási reflex, mely segítségével a felugrásban.” Labdarúgóknál az alsó végtag izomereje különösen fontos, mert a sportágsgazdasági mozgásokat szinte teljes mértékben az alsó végtaghoz kapcsolódnak, túlterhelés esetén itt a legnagyobb a non-kontakt

5 Váczi M.: Az erő mérése [Online]
6 Váczi M.: Az erő mérése [Online]
sérülés esélye. „A folyamatosan előforduló robbanékony izomreakcióval jellemezhető gyorsulások és lassítások, továbbá a gyors irányváltásos, rotáló futások során fokozott terhelés nehezedik az alsó végtagi ízületekre, izmokra és a core stabilizátorokra. Az ízületek mobilizáló illetve stabilizáló képességének hatékonysága elengedhetetlen a súlypontsüllyesztéseknél, talajraérkezéseknél. Az ebből kialakuló robbanékony irányváltásos meginduláshoz, az izomzat excentrikus és koncentrikus hatékonysága, valamint a core izom rotációt elősegítő képessége szükséges.”

2.4 Mesterséges neurális hálózat

A neurális hálózatok kifejlesztése a múlt század 50-es éveiben kezdődött, majd a 80-as években kapott újabb lendületet. Az emberi idegrendszer - mint természetes neurális háló - felépítésének és működésének tanulmányozása és megismerése vezetett ahhoz, hogy annak mintájára kialakítsanak egy hasonló elven működő mesterséges neurális hálózatot. „A neurális hálózatok olyan, számítási feladatok megoldására létrejött párhuzamos feldolgozást végző, adaptív eszközök, melyek eredete a biológiai rendszerek közül származtatott.” Előnye, hogy igen rövid idő alatt olyan komplex feladatok elvégzésére alkalmas, melyet hagyományos algoritmus módszerekkel eddig nem sikerült megoldani, vagy megoldható lenne ugyan, de időben olyan nagy ráfordítást igényelne, hogy nem kivitelezhető. Emellett a komplex feladatok pontos megoldásában gyakran nélkülözhetetlen bizonyos háttérinformációk ismerete. Jelen kutatás témájára vonatkoztatva például a sportolói állapotfelmérő tesztek eredményei, a korábbi sérülések száma, az edzésekben nyújtott teljesítmény és a mérkőzésen adott pontos passzok száma mind mérhető statisztikai adatok, de azt egyetlen hagyományos számítás sem fogja kimutatni, hogy a mérkőzés milyen körülmények között zajlik, mennyire lelkes a szurkolótábor és milyen mértékben inspiráló ez a játékosok számára. Milyen futballtörténelmet „cipel” magával a mérkőzések során és hogyan hat ez adott pillanatban a játék kimenetelére.

7 Zalai D., [et al.]: Elméletek a XXI. századi labdarúgósérülésekről, prevencióról és teljesítményt befolyásoló tényezőkről
8 Altrichter M., [et al]: Neurális hálózatok.
9 Altrichter M., [et al]: Neurális hálózatok.
Ezen háttérinformációk a médiában megjelent cikkek feldolgozásával kinyerhetőek lennének, de nehéz elképzelni, hogy bármelyik futballcsapatnak lenne erre kapacitása. Az ilyen komplex feladatok megoldásában a neurális háló képes az adekvát háttérinformációk kinyerésére és feldolgozására.

2.5. Sportsérülések osztályozása

2.5.1. Sérülések ismétlődése alapján

2.5.2. Súlyosság foka szerint
A súlyosság foka a kihagyott napok számával számszerűsíthető. A gyógyulási folyamatot siette nem lehet, a rehabilitációban alkalmazott tehermentesítési idő betartása igen nagy jelentőséggel bír. „A sportsérülések a mozgásszervi betegségek speciális csoportját képezik, hosszú távon sajnos igen nagy számban vezetnek degeneratív elváltozásokhoz.”

2.5.3. Sérülés mechanizmusa szerint
Az akut sérülések többnyire kontakt, jelentős mértékű erőbehatás következtében alakulnak ki. Gyakrabban fordulnak elő mérkőzéseken, mint az edzések során. Jellemzően nem megelőzhető sérülésekről van szó, melyek külső körülmények hatására következnek be. Ezzel szemben a non-kontakt sérülések túlterhelésből adódnak, kialakulásukban nagy szerepe van a sportoló aktuális állapotának. A

sportolói állapotfelmérések során kapott eredmények lehetőséget biztosítanak a prevencióra.11

2.5.4. Sérült képlet szövettani képe alapján

A sportsérülések jelentős hányadát teszik ki az izomsérülések. „Az izmok sérülése az egyik leggyakoribb sportsérülés, a főként II. típusú rostokból álló és a két izületet áthidaló izmokat érinti. Tipikusan sérülő izmok dinamikus sportok esetén a csípőadduktorok, a hamstring/ischiocruralis/combhajlító izmok, a m. quadriceps femoris és a lábszár izmai. […] Rizikófaktor lehet az elmaradt bemelegítés, a túlterhelés, csökkent mozgásterjedelem és izomdiszbalansz. A sérülés típusa szerint lehet húzódás, zúzódás és szakadás, továbbá következményes haematoma és necrosis is kialakulhat. Az izomrostok mellett a fasciák és az erek is sérülnek. “12

A kötő- és támasztószöveti sérülései a sérülés típusától függően akár több hónapos kiesést jelenthet a sérült sportolók számára. Az insérülés kialakulhat az izom-ín átmenetben, az ín állományában, vagy az ín-csont átmenetben direkt, vagy indirekt úton. Labdarúgásban jellemzően az Achilles-ín, a lig. patellae és a m. quadriceps femoris inán túlfeszítésből eredő indirekt módon létrejövő sérülései jellemzőek.

A szalagok sérülése, úgy mint húzódás, megnyúlás, részleges, vagy teljes szakadás gyakori sérülés a labdarúgásban. Térdizületben gyakran sérül a lig. cruciatum anterius13, bokaizületben supinatiós irányú sérülések hatására a lateralis oldalszalagot alkotó lig. talofibulare anterius, lig. calcaneofibulare és a lig. talofibulare posterius, pronációs mechanizmus következtében kialakuló sérülés esetében pedig a lig. collaterlae mediale felületes rostjai (lig. deltoideum).14 A szalagsérülések jelentőségét az adja, hogy lassú anyagcseréjükből adódóan hosszú ideig tart a regenerációs folyamatuk. Fasciasérülések az izomsérülésekhez kapcsolódóan

indirekt úton bekövetkező mechanikai erőbehatásra alakulnak ki. „... túlterheléses sérülés sorozatos mikrotraumái következtében indirekt hatással számolhatunk, amelyet neurogén tényezők (fájdalom) is befolyásolnak. A hegesedés következtében fájdalmas pontok, továbbá a fasciaretegek egymáson való elcsúszási képességének csökkenése következtében mozgásterjedelemben-deszűkülés, rugalmasságának, illetve elasztikus energiát tároló képességének csökkenése miatt mozgáskivitelezési problémák alakulhatnak ki.” A porcsérülések gyenge vérellátásuk miatt rossz gyógyhajlammal rendelkeznek. A labdarúgáshoz szükséges gyakori irányváltások, hirtelen elindulások, megállások és a kontakt sportokat jellemző gyakori nagy erejű ütközések kedvező feltételeket teremtenek a térdizületi meniscusok sérüléséhez.

Az izom-, in- és szalagsérülések előfordulásához viszonyítva csontsérülések rítkábban jönnek létre a labdarúgásban.16 Kedvező vérellátásuk miatt jól regenerálódnak, amennyiben a stabilitás is biztosított. Társulhat hozzá ér-, ideg-, izomsérülés.

Idegésérülések e sportágban főként társrésülésként, vagy egyéb sérüléshez kapcsolódóan kialakuló szövődményként jelenhetnek meg.

3. Hipotézisek

1. Feltételezem, hogy a sportolók a Funkcionális Mozgásminta Szűrés eredményeinek megfelelő adekvát, FMS-alapú edzésben részesülnek.

2. Feltételezem, hogy az FMS-alapú edzés növeli a mozgásminták precízebb kivitelezését, mely a kapott pontszámokban is megnyilvánul.

3. Feltételezem, hogy a vizsgált időszak FMS mérése során feltárt funkcionális deficitek és a túlterhelésből származó sportsérülések között van összefüggés.

4. Feltélezzem, hogy a vizsgált időszak CMJ teszt eredményei és a non-kontakt sérülések kialakulása között van összefüggés.
4. Anyag és módszer

4.1. Anyag

4.2. Módszer

5. Eredmények

5.1 Funkcionális mozgásminta szűrés eredményei

5.1.1 2021. év FMS eredményei

![Diagram](image)

1. diagram: 2021.évi FMS mérések összesített pontszám szerinti megoszlása

A medián értéke mindkét oldali vállmobilitás és a fekvőtámasz esetében 3, a többi mozgásminta esetében 2, az aszimmetriák esetén 1. A középértéktől való legnagyobb eltérést (0,72) a fekvőtámasz átlaga mutatja, a legkisebb eltérés a bal és a jobb oldalra történő rotáció mérési eredményében figyelhető meg, ennek értéke mindkettő esetén 0,13 pont. Az összesített pontszámok szórása 1,58. Az aszimmetriák számának szórása 0,8. A 2021. év leíró statisztikai adatait az 1. és 2. táblázat foglalja össze.
<table>
<thead>
<tr>
<th>Guggolás</th>
<th>Átlépés (b)</th>
<th>Átlépés (j)</th>
<th>Kitörés (b)</th>
<th>Kitörés (j)</th>
<th>Váll mobilitás (b)</th>
<th>Váll mobilitás (j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átlag</td>
<td>2,13</td>
<td>2,25</td>
<td>2,35</td>
<td>2,18</td>
<td>2,18</td>
<td>2,58</td>
</tr>
<tr>
<td>Medián</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Szórás</td>
<td>0,43</td>
<td>0,57</td>
<td>0,55</td>
<td>0,5</td>
<td>0,54</td>
<td>0,59</td>
</tr>
<tr>
<td>Min.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Max.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 táblázat: FMS 2021. év leíró statisztikai adatai

<table>
<thead>
<tr>
<th>Lábemelés (b)</th>
<th>Lábemelés (j)</th>
<th>Fekvőtámasz</th>
<th>Rotáció (b)</th>
<th>Rotáció (j)</th>
<th>Összesen</th>
<th>Aszimm. száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átlag</td>
<td>2,13</td>
<td>2,18</td>
<td>2,48</td>
<td>2,02</td>
<td>2,02</td>
<td>15,48</td>
</tr>
<tr>
<td>Medián</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>15,5</td>
</tr>
<tr>
<td>Szórás</td>
<td>0,5</td>
<td>0,47</td>
<td>0,72</td>
<td>0,13</td>
<td>0,13</td>
<td>1,58</td>
</tr>
<tr>
<td>Min.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Max.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>19</td>
</tr>
</tbody>
</table>

2. táblázat: FMS 2021. év leíró statisztikai adatai

A mozgásminták kivitelezése során csupán egyetlen 0 pontos mérési eredmény keletkezett, ez azt jelenti, hogy a vizsgált személyek közül egy fő az átlépés bal lábbal feladat kivitelezésekor fájdalmat jelzett. 1 pontos eredmény 33 esetben született, ök valamilyen oknál fogva az adott feladatot nem tudták végrehajtani. 459 esetben 2 pontra értékeltek a kivitelezést, ebben az esetben az érintett sportolók csak kompenzációs mechanizmussal tudták végrehajtani a feladatot. Helyes technikai kivitelezésre 227 alkalommal került sor, ennyiszer született 3 pontos eredmény. A rotációs minták kivitelezésére egyetlen kivételtől eltekintve minden résztvevő 2 pontos értkelet kapott. Figyelemre méltó, hogy a rotációs mintát csupán egyetlen sportoló tudta kompenzációs mechanizmus nélkül, helyes technikai kivitelezéssel végrehajtani. Az egyes mozgásminták gyakorisági eloszlása a 3. táblázatban látható.
5.1.2 2022. év FMS eredményei

A balra és jobbra rotáció mediánja egyaránt 1 pont lett, a váll mobilitás medián értéke mindkét oldalra 3 pont, a többi mozgásminta mediánja 2 pont. Az aszimmetriák számának medián értéke 1, szórása 1,2. Az összesített pontszámok szórása 1,87. A mozgásminták esetén a középértéktől való legkisebb eltérés (0,38) a bal átlépésnél, a
legnagyobb eltérés (0,69) a bal váll mobilitásánál található. A 2022. évi FMS mérési eredmények leíró statisztikái a 4. és 5. táblázatban kerültek összefoglalásra.

<table>
<thead>
<tr>
<th></th>
<th>Guggolás</th>
<th>Átlépés (b)</th>
<th>Átlépés (j)</th>
<th>Kitörés (b)</th>
<th>Kitörés (j)</th>
<th>Váll mobilitás (b)</th>
<th>Váll mobilitás (j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átlag</td>
<td>2,2</td>
<td>2,13</td>
<td>2,25</td>
<td>2,34</td>
<td>2,32</td>
<td>2,5</td>
<td>2,77</td>
</tr>
<tr>
<td>Medián</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Szórás</td>
<td>0,52</td>
<td>0,38</td>
<td>0,44</td>
<td>0,55</td>
<td>0,61</td>
<td>0,69</td>
<td>0,47</td>
</tr>
<tr>
<td>Min.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Max.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

4. táblázat: FMS 2022. év leíró statisztikai adatai

<table>
<thead>
<tr>
<th></th>
<th>Lábemelés (b)</th>
<th>Lábemelés (j)</th>
<th>Fekvőtámasz</th>
<th>Rotáció (b)</th>
<th>Rotáció (j)</th>
<th>Összesen</th>
<th>Aszimm. Száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átlag</td>
<td>1,88</td>
<td>1,89</td>
<td>2,36</td>
<td>1,16</td>
<td>1,25</td>
<td>14,11</td>
<td>1,29</td>
</tr>
<tr>
<td>Medián</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Szórás</td>
<td>0,69</td>
<td>0,68</td>
<td>0,7</td>
<td>0,37</td>
<td>0,44</td>
<td>1,87</td>
<td>1,2</td>
</tr>
<tr>
<td>Min.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Max.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

5. táblázat: FMS 2022. év leíró statisztikai adatai

Az egyes mozgásminták értékelésekor 0 pontot ezúttal egyetlen sportoló sem kapott. 146 alkalommal született 1 pontos eredmény, 322 alkalommal kaptak 2 pontot a mozgásminta kivitelezésére a vizsgált személyek és 204 alkalommal 3 pontra értékelték a feladat végrehajtását. A jobb és a bal rotáció pontszámait áttekintve látható, hogy a 2022. januári mérésen egyetlen sportoló sem tudta helyes technikai kivitelezéssel végrehajtani a mozgásmintát. Kompenzációs mechanizmusokkal is viszonylag kevesen, (bal oldalra 9 fő, jobb oldalra 14 fő), nagy számban születtek 1 pontos eredmények, bal oldali rotáció esetén 47 alkalommal, míg jobb oldali rotáció esetén 42 alkalommal. Az egyes mozgásminták gyakorisági eloszlása a 6. táblázatban látható.
Felugrás teszttel 2021-ben két alkalommal vizsgálták a sportolókat. A mérések január és július hónapban történtek. A januári mérések során 28 főt vizsgáltak (n=28), a júliusi mérések során 45 sportoló mérése történt meg (n=45). Közülük 20 sportoló rendelkezik két mérési eredménnyel (n=20), ők a januári és a júliusi méréseken egyaránt részt vettek. A januári teszt leíró statisztikai eredményeit a 7. táblázat, a júliusi eredményeket a 8. táblázat foglalja össze.

<table>
<thead>
<tr>
<th>Testsúly (kg)</th>
<th>Ugrásmagasság</th>
<th>P (W)</th>
<th>F (N)</th>
<th>V (m/s)</th>
<th>Max. RFD (N/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átlag</td>
<td>69,55</td>
<td>0,34</td>
<td>1991,00</td>
<td>1390,25</td>
<td>1,58</td>
</tr>
<tr>
<td>Szórás</td>
<td>9,13</td>
<td>0,03</td>
<td>336,63</td>
<td>197,64</td>
<td>0,09</td>
</tr>
<tr>
<td>Minimum</td>
<td>55,10</td>
<td>0,29</td>
<td>1408,00</td>
<td>1044,00</td>
<td>1,36</td>
</tr>
<tr>
<td>Maximum</td>
<td>89,20</td>
<td>0,39</td>
<td>2628,00</td>
<td>1770,00</td>
<td>1,70</td>
</tr>
</tbody>
</table>

6. táblázat: A 2022. évi FMS pontszámok előfordulása mozgásmintánként

5.2 CMJ teszt eredményei

7. táblázat: 2021. január havi CMJ leíró statisztikai eredmények
<table>
<thead>
<tr>
<th></th>
<th>Testsúly (kg)</th>
<th>Ugrásmagasság</th>
<th>P (W)</th>
<th>F (N)</th>
<th>V (m/s)</th>
<th>Max. RFD (N/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átlag</td>
<td>68,57</td>
<td>0,37</td>
<td>2062,53</td>
<td>1384,85</td>
<td>1,63</td>
<td>12478,67</td>
</tr>
<tr>
<td>Szórás</td>
<td>10,09</td>
<td>0,04</td>
<td>412,98</td>
<td>233,65</td>
<td>0,11</td>
<td>5347,89</td>
</tr>
<tr>
<td>Minimum</td>
<td>38,90</td>
<td>0,29</td>
<td>1154,00</td>
<td>800,40</td>
<td>1,38</td>
<td>4442,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>85,90</td>
<td>0,46</td>
<td>3135,00</td>
<td>1885,00</td>
<td>1,90</td>
<td>27835,00</td>
</tr>
</tbody>
</table>

8. táblázat: 2021. július havi CMJ leíró statisztikai eredmények

5.3 Sérülések alakulása 2021-ben

A vizsgált időszakban összesen 121 alkalommal történt sérülés, vagy betegség. A sérülésregiszterben a betegségből eredő hiányzások is rögzítésre kerülnek, mert hasonlóan a sérülésekhez, a betegség is edzésterhelés nélküli hiányzást eredményez. A non-kontakt sérülések száma (65) meghaladja a kontakt sérülések számát (52), egyéb betegséget 4 alkalommal regisztráltak a vizsgált időszak során. A 3. diagram mutatja a kontakt (piros színnel jelölt) és a nem kontakt (kék színnel jelölt) mechanizmus alapján létrejövő sérülések arányát. (Sárga színt kapott a betegségek előfordulási aránya.) Legnagyobb arányban (22%) a túlterhelésből adódó non-kontakt sérülések fordultak elő. Gyakran jönnek létre sérülések a játékosok ütközése következtében (16%), emellett a rúgásokból eredő sérülések is gyakoriak. Utóbbi két sérüléstípus a kontakt sérülések képviselői. A 2021-ben történt sérülések 54%-ban nem kontakt mechanizmus révén jönnek létre, 43%-ban viszont másik játékossal vagy a labdával való találkozás áll a sérülés hátterében. Az egy főre eső sérülések száma 1,66 és ebből 0,92 az egy főre eső non-kontakt sérülésszám.
3. diagram: Sérülések alakulása 2021-ben a sérülés mechanizmusa szerinti bontásban

A non-kontakt sérüléseket tekintve 30 főnek egyáltalán nem, 25 főnek egy alkalommal, 10 főnek két alkalommal, 4 főnek három és 2 főnek négy alkalommal volt non-kontakt sérülése. A non-kontakt sérülések százalékos megoszlása a 4. diagramon látható

4. diagram: Non-kontakt sérülésszám százalékos megoszlása 2021-ben
5.4 Összefüggés vizsgálatok

5.4.1 FMS eredményei és a nem kontakt sérülések közötti összefüggés vizsgálata

<table>
<thead>
<tr>
<th></th>
<th>2021. év</th>
<th>2022. év</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r_s)</td>
<td>(p)</td>
</tr>
<tr>
<td>Guggolás</td>
<td>-0,02</td>
<td>0,88</td>
</tr>
<tr>
<td>Átlépés bal</td>
<td>-0,10</td>
<td>0,46</td>
</tr>
<tr>
<td>Átlépés jobb</td>
<td>-0,31</td>
<td>0,02</td>
</tr>
<tr>
<td>Kitörés bal</td>
<td>-0,06</td>
<td>0,67</td>
</tr>
<tr>
<td>Kitörés jobb</td>
<td>-0,14</td>
<td>0,30</td>
</tr>
<tr>
<td>Váll mobilitás bal</td>
<td>-0,14</td>
<td>0,29</td>
</tr>
<tr>
<td>Váll mobilitás jobb</td>
<td>-0,03</td>
<td>0,80</td>
</tr>
<tr>
<td>Lábemelés bal</td>
<td>-0,02</td>
<td>0,91</td>
</tr>
<tr>
<td>Lábemelés jobb</td>
<td>-0,05</td>
<td>0,72</td>
</tr>
<tr>
<td>Fekvőtámasz</td>
<td>0,02</td>
<td>0,88</td>
</tr>
<tr>
<td>Rotáció bal</td>
<td>0,15</td>
<td>0,27</td>
</tr>
<tr>
<td>Rotáció jobb</td>
<td>0,15</td>
<td>0,27</td>
</tr>
<tr>
<td>Összesen</td>
<td>-0,16</td>
<td>0,22</td>
</tr>
<tr>
<td>Aszimmetriák száma</td>
<td>0,17</td>
<td>0,20</td>
</tr>
</tbody>
</table>

5.4.2 CMJ tesztek eredményei és a non-kontakt sérülések közötti összefüggések vizsgálata

A CMJ tesztek mérési eredményei és a non-kontakt sérülések számának vizsgálata során sem a januári, sem a júliusi eredmények esetén nem mutattak összefüggést a Pearson-féle korrelációs vizsgálat szerint. A Pearson-féle korrelációs vizsgálat eredményei t a 10. táblázat mutatja.

<table>
<thead>
<tr>
<th></th>
<th>Január</th>
<th>Július</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r)</td>
<td>(p)</td>
</tr>
<tr>
<td>Ugrásmagasság</td>
<td>-0,02</td>
<td>0,91</td>
</tr>
<tr>
<td>Átlag teljesítmény</td>
<td>-0,01</td>
<td>0,96</td>
</tr>
<tr>
<td>Átlag erő</td>
<td>0,01</td>
<td>0,95</td>
</tr>
<tr>
<td>Átlag sebesség</td>
<td>-0,14</td>
<td>0,49</td>
</tr>
<tr>
<td>Erőfelfutás meredeksége</td>
<td>-0,07</td>
<td>0,72</td>
</tr>
</tbody>
</table>

10. táblázat: 2021. évi CMJ mérési eredmények és a non-kontakt sérülések száma közötti Pearson-féle korrelációs vizsgálatok eredményei
5.4.3 FMS 2021-22. évi eredményeinek összehasonlítása Wilcoxon próbával

A Wilcoxon próbával végzett összehasonlítás alapján a guggolás, mindkét oldali átlépés, mindkét oldali kitörés, mindkét oldali váll mobilitás és a fekvőtámasz minták eredményeiben nincs szignifikáns eltérés. A bal lábemelés, mindkét oldali gerinc rotáció, az összpontszámok és az aszimmetriák között azonban szignifikáns különbség van.

<table>
<thead>
<tr>
<th></th>
<th>guggolás (b) - guggolás</th>
<th>átlépés (b) - átlépés (b)</th>
<th>átlépés (j) - átlépés (j)</th>
<th>kitörés (b) - kitörés (b)</th>
<th>kitörés (j) - kitörés (j)</th>
<th>váll mob. (b) - váll mob. (b)</th>
<th>váll mob. (j) - váll mob. (j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-1,000b</td>
<td>-1,342c</td>
<td>-1,000c</td>
<td>-1,606b</td>
<td>-1,000b</td>
<td>-1,732c</td>
<td>-2,64b</td>
</tr>
<tr>
<td>P</td>
<td>0,317</td>
<td>0,18</td>
<td>0,317</td>
<td>0,108</td>
<td>0,32</td>
<td>0,083</td>
<td>0,792</td>
</tr>
</tbody>
</table>

11. táblázat: Szignifikancia értékek a 2021-22. év FMS mérési eredményeinek vonatkozásában

<table>
<thead>
<tr>
<th></th>
<th>lábemelés (b)2 - lábemelés (b)</th>
<th>lábemelés (j)2 - lábemelés (j)</th>
<th>fekvőtámasz z2 - fekvőtámasz z</th>
<th>rotáció (b)2 - rotáció (b)</th>
<th>rotáció (j)2 - rotáció (j)</th>
<th>összesen 2 - összesen</th>
<th>aszimmetriák k2 - aszimmetriák k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-2,558c</td>
<td>-3,266c</td>
<td>-.607c</td>
<td>-6,252c</td>
<td>-6,008c</td>
<td>-4,765c</td>
<td>-2,155b</td>
</tr>
<tr>
<td>P</td>
<td>0,01</td>
<td>0</td>
<td>0,5</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td>0,031</td>
</tr>
</tbody>
</table>

12. táblázat: Szignifikancia értékek a 2021-22. év FMS mérési eredményeinek vonatkozásában

A sz. táblázatban párokba rendezve láthatóak a 2021.-2022. év leíró statisztikái. A bal lábemelés 2022-ben mért átlagpontszámai 0,25 ponttal gyengébbek 2021. évi átlag pontszámoknál. A bal oldalra történő gerinc rotáció átlagai 0,86 ponttal, a jobb oldalra történő rotáció átlag pontszámai 0,77 ponttal csökkentek. Az összpontszámok átlagai 1,37 pontos csökkenést mutatnak, az aszimmetriák számának átlagai 0,44 ponttal növekedtek.
<table>
<thead>
<tr>
<th></th>
<th>Átlag</th>
<th>Szórás</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guggolás</td>
<td>2,13</td>
<td>0,43</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Guggolás 2</td>
<td>2,20</td>
<td>0,52</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Átlépés (b)</td>
<td>2,25</td>
<td>0,57</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Átlépés (b) 2</td>
<td>2,13</td>
<td>0,38</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Átlépés (j)</td>
<td>2,35</td>
<td>0,55</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Átlépés (j) 2</td>
<td>2,25</td>
<td>0,44</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Kitörés (b)</td>
<td>2,18</td>
<td>0,50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Kitörés (b) 2</td>
<td>2,34</td>
<td>0,55</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Kitörés (j)</td>
<td>2,18</td>
<td>0,54</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Kitörés (j) 2</td>
<td>2,32</td>
<td>0,61</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Váll mobilitás (b)</td>
<td>2,58</td>
<td>0,59</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Váll mobilitás (b) 2</td>
<td>2,50</td>
<td>0,69</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Váll mobilitás (j)</td>
<td>2,68</td>
<td>0,60</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Váll mobilitás (j) 2</td>
<td>2,77</td>
<td>0,47</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lábszár (b)</td>
<td>2,13</td>
<td>0,50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lábszár (b) 2</td>
<td>1,88</td>
<td>0,69</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lábszár (j)</td>
<td>2,18</td>
<td>0,47</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lábszár (j) 2</td>
<td>1,89</td>
<td>0,68</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Fekvőtámasz</td>
<td>2,48</td>
<td>0,72</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Fekvőtámasz 2</td>
<td>2,36</td>
<td>0,70</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Rotáció (b)</td>
<td>2,02</td>
<td>0,13</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Rotáció (b) 2</td>
<td>1,16</td>
<td>0,37</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Rotáció (j)</td>
<td>2,02</td>
<td>0,13</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Rotáció (j) 2</td>
<td>1,25</td>
<td>0,44</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Összpontszám</td>
<td>15,48</td>
<td>1,58</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Összpontszám 2</td>
<td>14,11</td>
<td>1,87</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>Aszimmetriák</td>
<td>0,85</td>
<td>0,80</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Aszimmetriák 2</td>
<td>1,29</td>
<td>1,20</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

13. sz. táblázat: FMS pontszámok 2021-22. évi összesített leíró statisztikái

5.4.4 CMJ 2021. év januári és július eredményeinek összehasonlítása páros mintás T-próbával

A vizsgált személyek közül 20 főnek (n=20) keletkezett két mérési eredménye, ők a januári és a július méréseken egyaránt részt vettek. A páros mintás T-próba szerint az ugrásmagasság, az átlag teljesítmény, az átlag erő és az átlag sebesség értékeiben gyenge negatív irányú szignifikáns változás történt.
14. sz. táblázat: CMJ mérések páros mintás t-próbának eredményei

Az ugrásmagasság átlaga 0,03m-rel, az átlag teljesítmény átlaga 185,25 wattal, az átlag erő átlaga 76,45 newtonnal, az átlag sebesség átlaga 0,05m/s-mal, az erőfelfutás meredekségének átlaga pedig 0,05 N/s-mal növekedett.

15. sz. táblázat: CMJ mérések leíró statszikai adatai

<table>
<thead>
<tr>
<th></th>
<th>Átlag</th>
<th>Szórás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ugrásmagasság 1</td>
<td>0,34</td>
<td>0,03</td>
</tr>
<tr>
<td>Ugrásmagasság 2</td>
<td>0,37</td>
<td>0,03</td>
</tr>
<tr>
<td>Átlag teljesítmény 1</td>
<td>1929,90</td>
<td>341,66</td>
</tr>
<tr>
<td>Átlag teljesítmény 2</td>
<td>2115,15</td>
<td>323,91</td>
</tr>
<tr>
<td>Átlag erő 1</td>
<td>1340,40</td>
<td>195,83</td>
</tr>
<tr>
<td>Átlag erő 2</td>
<td>1416,85</td>
<td>193,51</td>
</tr>
<tr>
<td>Átlag sebesség 1</td>
<td>1,59</td>
<td>0,09</td>
</tr>
<tr>
<td>Átlag sebesség 2</td>
<td>1,64</td>
<td>0,10</td>
</tr>
<tr>
<td>Erőfelfutás meredeksége 1</td>
<td>12133,40</td>
<td>3033,55</td>
</tr>
<tr>
<td>Erőfelfutás meredeksége 2</td>
<td>14324,75</td>
<td>5853,37</td>
</tr>
</tbody>
</table>

5.4.5 Mesterséges neurális hálózat alkalmazása a non-kontakt sérülések előrejelzésére

Ebben a vizsgálatban mesterséges neurális hálózat segítségével keresek összefüggéseket az állapotfelmérő tesztek és a non-kontakt sérülések között. A mesterséges neurális hálózatok képesek a bemeneti adatokkal végzett műveletekkel tanulni (gépi tanulás). A bevitt adatok elemzésével szabályszerűségeket tár fel, majd a tréning adatokon saját maga részére állít fel paramétereket (tréning fázis). Ezután a teszt fázisban ellenőrzi, hogy a felállított paraméterezés milyen eredményeket mutat. Amennyiben szükséges, változtat rajta, egészen addig, amíg a legjobb eredményt
állítja elő. Megmutatja, hogy az egyik oldalon törtétnő változások milyen következményekkel járnak a másik oldalon.

1. modell: FMS összpontszámok és a non-kontakt sérülések közötti összefüggés vizsgálata

Elsőként megvizsgáltam az FMS összpontszám és a non-kontakt sérülések közötti összefüggést a neurális háló segítségével. Az inputot az FMS összpontszámok alkotják, a kimeneti oldalon a non-kontakt sérülésekre vonatkozó nincs (nks2=0) és van (nks2=1) állítások találhatóak. A minta elemzésára 60 fő, ennyi sportolónál végezték el a funkcionális mozgásminta szűrést. Az előrejelzést a tanulási fázisban fázisban 47 (78,3%) fő mérési eredményén gyakorolta be és ezt 13 (21,7%) fő mérési eredményén tesztelte.

<table>
<thead>
<tr>
<th>Minta</th>
<th>N</th>
<th>Megoszlás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tréning</td>
<td>47</td>
<td>78,3%</td>
</tr>
<tr>
<td>Teszt</td>
<td>13</td>
<td>21,7%</td>
</tr>
</tbody>
</table>

Minta összesen	60	100,0%
Nincs adat	11	
Összes elemzám	71	

16. sz. táblázat: 1. modell mintaelemének összetétele

A sz. ábrán látható, az 1. modellhez kapcsolódó neurális háló, melynek bal oldalán találhatóak az input adatok, ebben a modellben az FMS összpontszám, jobb oldalon az output adatok, itt nks2. Köztük egy közbenső réteg, ún. rejtett réteg található, ezen keresztül zajlanak a műveletek.
1. sz. ábra: 1. modell mesterséges neurális hálózata

A 17. sz. táblázatban láthatjuk a kapott eredményeket. A neurális háló a tréning fázisban 40,4%, a teszt fázis során pedig 30,8%-ban hibás előrejelzést adott. Ez a modell tehát meglehetősen pontatlan a non-kontakt sérülések előrejelzésében. A táblázatban egy másik érték, a keresztentrópia függvény is feltüntetésre került. „A keresztentrópia hibafüggvény a neurális hálók tanításánál alkalmazott egy fajta függvény a háló kimenetelének jóságának mérésére. A függvény a természetes alapú logaritmust használja az elvárt kimenet és a kapott kimenet összehasonlítására.”

<table>
<thead>
<tr>
<th>Tréning</th>
<th>Keresztentrópia függvény</th>
<th>31,02</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hibás előrejelzések %-a</td>
<td>40,4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teszt</th>
<th>Keresztentrópia függvény</th>
<th>8,51</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hibás előrejelzések %-a</td>
<td>30,8%</td>
</tr>
</tbody>
</table>

17.sz. táblázat: 1. modell hibás előrejelzéseinek az aránya

A tréning során, azokat az esteket, ahol nem volt sérülés (nks2=0) mind a 28 esetben 100%-os pontossággal jelezte előre, azokat az esteket viszont, ahol volt sérülés

17 Mesterséges Inteligencia Almanach [Online]
(nks2=1), tévesen úgy jelezte, hogy nincs, ez az előrejelzés tehát 0%-os pontosságot jelent.

<table>
<thead>
<tr>
<th>Minta</th>
<th>Megfigyelés</th>
<th>Előrejelzés</th>
<th>Helyes előrejelzések aránya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tréning</td>
<td>0</td>
<td>28</td>
<td>100,0%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>19</td>
<td>0,0%</td>
</tr>
<tr>
<td>Összesen</td>
<td>100,0%</td>
<td>0,0%</td>
<td>59,6%</td>
</tr>
<tr>
<td>Teszt</td>
<td>0</td>
<td>9</td>
<td>100,0%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>0,0%</td>
</tr>
<tr>
<td>Összesen</td>
<td>100,0%</td>
<td>0,0%</td>
<td>69,2%</td>
</tr>
</tbody>
</table>

18. sz. táblázat: Non-kontakt sérülés előrejelzése az 1. modellben

Mivel az 1. modell non-kontakt sérülésekre vonatkozó előrejelzési képessége teszt fázisban csupán 69,2%-os eredményt hozott, szükségesnek tartom az inputok bővítését.

2. modell: FMS összpontszámok és aszimmetriák számának összefüggésvizsgálata a non-kontakt sérülésekkel

Ebben a modellben az FMS összpontszám mellé a mérések során feltárt aszimmetriákat is az inputok közé helyezem. A program a tanuláshoz 33 fő adataival „gyakorolja” az előrejelzést és 27 fő adatain teszteli.

<table>
<thead>
<tr>
<th>Minta</th>
<th>N</th>
<th>Megoszlás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tréning</td>
<td>33</td>
<td>55,0%</td>
</tr>
<tr>
<td>Teszt</td>
<td>27</td>
<td>45,0%</td>
</tr>
<tr>
<td>Minta összesen</td>
<td>60</td>
<td>100,0%</td>
</tr>
<tr>
<td>Nincs adat</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Összes elemszám</td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>

19. sz. táblázat: 2. modell minta összetétele

A felépült neurális hálót a X. sz. ábrán láthatjuk.
A helyes előrejelzések arányát a 21. sz. táblázat mutatja be. A tréning mintában 21 főnek nem volt, 12 főnek volt sérülése. A becslés 100%-os pontosságú volt azoknál az egyéneknél, akiknek nem volt sérülése. A sérüléssel rendelkező sportolókat viszont ez a modell sem ismerte fel a tréning mintában. A tesztelés során is ennek
megfelelően alakultak az eredmények, így összességében véve a non-kontakt sérülések előrejelzése a tanulási fázisban 63,6%-os, a teszt fázisban 59,3%-os pontosságú ebben a modellben.

<table>
<thead>
<tr>
<th>Minta</th>
<th>Megfigyelés</th>
<th>Előrejelzés</th>
<th>Helyes előrejelzések aránya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tréning</td>
<td>0</td>
<td>21</td>
<td>1 (100,0%)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>12</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Összesen</td>
<td></td>
<td></td>
<td>63,6%</td>
</tr>
<tr>
<td>Teszt</td>
<td>0</td>
<td>16</td>
<td>1 (100,0%)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Összesen</td>
<td></td>
<td></td>
<td>59,3%</td>
</tr>
</tbody>
</table>

21. sz. táblázat: Helyes előrejelzések aránya 2. modellben

A 2. modell előrejelző képessége még az 1. modellnél is kedvezőtlenebbül alakult, ezért további vizsgálatokra van szükség a jobb eredmény elérése érdekében.

3. modell: FMS részpontszámai és a non-kontakt sérülések közötti összefüggés vizsgálata

Mint láthattuk, az FMS összpontszámái nem nyújtottak elegendő információt ahhoz, hogy belőlük érdemi előrejelzést lehessen készíteni a non-kontakt sérülésekre nézve. Ehhez a vizsgálathoz az FMS egyes feladataira kapott részpontok alkotják a bemenő adatokat. Az FMS összpontszámok és az aszimmetriák nem kerülnek bele a vizsgálatba. A 3. modell 40 sportoló adatait használja fel a tanuláshoz és 20 fő adatain teszti azt.

<table>
<thead>
<tr>
<th>N</th>
<th>Megoszlás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minta Tréning</td>
<td>40</td>
</tr>
<tr>
<td>Teszt</td>
<td>20</td>
</tr>
<tr>
<td>Minta összesen</td>
<td>60</td>
</tr>
<tr>
<td>Nincs adat</td>
<td>11</td>
</tr>
<tr>
<td>Összes elemzám</td>
<td>71</td>
</tr>
</tbody>
</table>

22. sz. táblázat: 3. modell minta összetétele
A felépített neurális háló inputja itt már jóval több elemet tartalmaz, output oldalon továbbra is a non-kontakt sérülések szerepelnek.

3.sz. ábra: a 3. modell neurális hálózata
A X. sz. táblázatban látható értékek az eddig vizsgált modellekhez képest nagyfokú előrelépést jelentenek. A tréning és a teszt fázis során egyaránt, a hibás előrejelzések aránya mindössze 20%.

<table>
<thead>
<tr>
<th>Tréning</th>
<th>Keresztentrópia függvény</th>
<th>20,90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hibás előrejelzések %-a</td>
<td>20,0%</td>
</tr>
<tr>
<td>Teszt</td>
<td>Keresztentrópia függvény</td>
<td>10,67</td>
</tr>
<tr>
<td></td>
<td>Hibás előrejelzések %-a</td>
<td>20,0%</td>
</tr>
</tbody>
</table>

23. sz. táblázat: Hibás előrejelzések aránya a 3. modellben

Az FMS részpontszámai alapján történő becslés a leg pontosabb az eddig vizsgált modellek közül. A tanulási fázisban 24 sérüléssel nem rendelkező és 16 sérüléssel rendelkező sportoló adatai készült az előrejelzés. Azoknál a sportolóknál, akiknél nem történt sérülés 91, 7%-os pontosságú előrejelzést adott a modell. A 16-ból 6 esetben történt téves előrejelzés, melynek során nem jelezte előre a sérülést, 10 fő sérülését viszont helyesen jelezte előre. így 62,5%-os becsülést adott. Teszt fázisnál 13-ból 1 főt jelzett tévesen sérülésként a nem sérült sportolók közül (92,3%). A sérüléssel rendelkező sportolók esetében 7-ből 4 főnél sikeres volt az előrejelzés (57,1%). Összesítve a tréning és a teszt fázisban 80%-os volt az előrejelzés pontossága, ami az eddigi eredményekhez viszonyítva jelentős előrelépést jelent.

<table>
<thead>
<tr>
<th>Minta</th>
<th>Megfigyelés</th>
<th>Előrejelzés</th>
<th>Helyes előrejelzések aránya</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tréning</td>
<td>0</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Összesen</td>
<td>70,0%</td>
<td>30,0%</td>
</tr>
<tr>
<td>Teszt</td>
<td>0</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Összesen</td>
<td>75,0%</td>
<td>25,0%</td>
</tr>
</tbody>
</table>

24. sz. táblázat: Helyes előrejelzések aránya a 3. modellben
A neurális háló az előrejelzések kialakításánál az egyes mérések adatait nem egyformán hasznosítja. Ez alapján egy fontossági sorrendet állít fel. Ebben a vizsgálatban a jobb lábbal való átlépés mérési eredményei szolgáltatták az előrejelzés szempontjából a legfontosabb adatokat. Legkevésbé a jobb lábbal végzett kitörés eredményeit vette figyelembe az előrejelzés készítésekor.

5. sz. diagram: A számításokhoz felhasznált adatok súlyozása az 3. modellben

4. modell: Az FMS részpontszámai, az aszimmetriák és a non-kontakt sérülések közötti összefüggés vizsgálata

Ebben a modellben az FMS részpontszámai mellé felvettem az aszimmetriákat is, hogy az algoritmusnak még több információ álljon rendelkezésre a sportolók állapotáról. A kapott eredmény azonban jókora visszalépést jelentett a 3. modell előrejelző képességéhez képest. A tréning során mindössze 60,5%-os, a teszt során pedig 64,7%-os pontossággal jelezte előre a sérülést.
25. sz. táblázat: Helyes előrejelzések aránya a 4. modellben

<table>
<thead>
<tr>
<th>Minta</th>
<th>Megfigyelés</th>
<th>Előrejelzés</th>
<th>Helyes előrejelzések aránya</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tréning</td>
<td>0</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>17</td>
<td>0,0%</td>
</tr>
<tr>
<td>Összesen</td>
<td>100,0%</td>
<td>0,0%</td>
<td>60,5%</td>
</tr>
<tr>
<td>Teszt</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6</td>
<td>0,0%</td>
</tr>
<tr>
<td>Összesen</td>
<td>100,0%</td>
<td>0,0%</td>
<td>64,7%</td>
</tr>
</tbody>
</table>

A 6. sz. diagramon láthatjuk az előrejelzés készítéséhez felhasznált információk fontossági sorrendjét.

6. sz. diagram: A felhasznált adatok súlyozása a 4. modellben

5. modell: CMJ teszt 2021. januári mérési eredményei és a non-kontakt sérülések közötti összefüggés vizsgálata

A CMJ eredményeit felhasználva készítem el a következő modellt, itt az öt felmért paraméter, a felugrás magassága, az átlag teljesítmény, átlag erő, átlag sebesség és az
erőfelfutás meredeksége fogja képezni az inputot, az output oldalon továbbra is a non-kontakt sérülések szerepelnek. Elsőként csak az első, 2021. januári mérés adatait használok fel. Ekkor 28 sportoló CMJ felmérése készült el. Ebből 11 sportoló adatain tanulja be az előreljelzést a program, melyet 17 sportoló adatain tesztel.

<table>
<thead>
<tr>
<th>Minta</th>
<th>N</th>
<th>Megoszlás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tréning</td>
<td>11</td>
<td>39,3%</td>
</tr>
<tr>
<td>Teszt</td>
<td>17</td>
<td>60,7%</td>
</tr>
<tr>
<td>Minta összesen</td>
<td>28</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

26. sz. táblázat: Minta összetétele az 5. modellben

A felállított neurális háló felépítése egyszerű, hiszen kevés mérési adatot használ.

4. sz. ábra: 5. modell neurális hálózata
A hibás előrejelzések aránya a tréning során kedvezően alakul (18,2%), de a teszt eredmények gyengébbek (29,4%).

<table>
<thead>
<tr>
<th></th>
<th>Keresztentrópia függvény</th>
<th>5,34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tréning</td>
<td>Hibás előrejelzések aránya</td>
<td>18,2%</td>
</tr>
<tr>
<td></td>
<td>Keresztentrópia függvény</td>
<td>10,59</td>
</tr>
<tr>
<td>Teszt</td>
<td>Hibás előrejelzések aránya</td>
<td>29,4%</td>
</tr>
</tbody>
</table>

27. sz. táblázat: Hibás előrejelzések aránya az 5. modellben

A tréning során sikerrel kimutatta, hogy 9 főnél nincs sérülés, de téves előrejelzést is adott, mert 2 esetben nem jelezte előre a sérülést. Még így is 81,8%-os pontosságú előrejelzést adott, ami a teszt során 70,6%-ra csökkent.

<table>
<thead>
<tr>
<th></th>
<th>Megfigyelés</th>
<th>Előrejelzés</th>
<th>Helyes előrejelzések aránya</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tréning</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Összesen</td>
<td>100,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td></td>
<td>Teszt</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Összesen</td>
<td>100,0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

28. sz. táblázat: Helyes előrejelzések aránya a 5. modellben

Az előrejelzés kialakításában az átlag erő mérési eredményei hasznosultak legnagyobb mértékben, majd ezt követte az ugrásmagasság, az erőfelfutás meredeksége, az átlag teljesítmény és végül az átlag sebesség.
7. sz. diagram: A felhasznált adatok súlyozása az 5. számú modellben

6. modell: CMJ 2021. évi összes mérési eredménye és a non-kontakt sérülések közötti összefüggés vizsgálata

Ebben a modellben a CMJ összes 2021. évi mérési adatát felhasználom.

<table>
<thead>
<tr>
<th>Minta</th>
<th>N</th>
<th>Megoszlás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tréning</td>
<td>15</td>
<td>75,0%</td>
</tr>
<tr>
<td>Teszt</td>
<td>5</td>
<td>25,0%</td>
</tr>
<tr>
<td>Minta összesen</td>
<td>20</td>
<td>100,0%</td>
</tr>
<tr>
<td>Nincs adat</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Összes elemszám</td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>

29. sz. táblázat: A 6. modell minta összetétele

A felépített neurális háló képe az 5.sz. ábrán látható.
5. sz. ábra: A 6. modell neurális hálózata
A hibás előrejelzések aránya tréning során 20%, teszt során 40%-os.

<table>
<thead>
<tr>
<th></th>
<th>Keresztentrópia függvény</th>
<th>7,66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tréning</td>
<td>Hibás előrejelzések aránya</td>
<td>20,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teszt</td>
<td>Keresztentrópia függvény</td>
<td>3,60</td>
</tr>
<tr>
<td></td>
<td>Hibás előrejelzések aránya</td>
<td>40,0%</td>
</tr>
</tbody>
</table>

30. sz. táblázat: Hibás előrejelzések aránya a 6. modellben

A helyes előrejelzések arányát a . sz. táblázat mutatja. A neurális háló a tréning során 80%-os, teszt fázisban 60%-os pontosságú becslést eredményezett. Ebben a modellben is a sérülések előrejelzésében teljesített alul, hiszen egyetlen non-kontakt sérülést sem jelzett előre.

<table>
<thead>
<tr>
<th>Minta</th>
<th>Megfigyelés</th>
<th>Előrejelzés</th>
<th>Helyes előrejelzések aránya</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tréning</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Összesen</td>
<td>100,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Teszt</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Összesen</td>
<td>100,0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

31. sz. táblázat: Helyes előrejelzések száma a 6. modellben

Az előrejelzés kialakítása során a felhasznált mérési eredmények közül az erőfelfutás meredekségének eredményei voltak a legmeghatározóbbak.
8. sz. diagram: Az adatfelhasználás fontossági sorrendje a 6. modell neurális hálózatában

7. modell: Komplex vizsgálat - FMS részpontszámai, aszimetriák, CMJ mérési adatai és a non-kontakt sérülések közötti összefüggés vizsgálata

Ebben a modellben megvizsgálom, hogy milyen pontos előrejelzést tud adni a neurális háló, ha az összes mérési eredményt felhasználja. Az FMS összpontszámai azért nem kerülnek bele, mert a részpontszámok összegét adják, így nem szükséges kétszer szerepeltetni.

<table>
<thead>
<tr>
<th>Minta</th>
<th>Tréning</th>
<th>N</th>
<th>Megoszlása</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>70,0%</td>
</tr>
<tr>
<td></td>
<td>Teszt</td>
<td>6</td>
<td>30,0%</td>
</tr>
<tr>
<td>Minta összesen</td>
<td></td>
<td>20</td>
<td>100,0%</td>
</tr>
<tr>
<td>Nincs adat</td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Ősszes elemszám</td>
<td></td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>

32. sz. táblázat: A 7. modell minta összetétele

A felépített neurális háló az eddigiak közül a legbonyolultabb
6. sz. ábra: 7. modell neurális hálózata
A hibás előrejelzések aránya a tanulási fázisban, mindössze 7,1%, a teszt fázis során 16,7% lett.

<table>
<thead>
<tr>
<th>Tréning</th>
<th>Keresztentrópia hibafüggvény</th>
<th>1,92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hibás előrejelzések aránya</td>
<td>7,1%</td>
<td></td>
</tr>
<tr>
<td>Teszt</td>
<td>Keresztentrópia hibafüggvény</td>
<td>1,33</td>
</tr>
<tr>
<td>Hibás előrejelzések aránya</td>
<td>16,7%</td>
<td></td>
</tr>
</tbody>
</table>

33. sz. táblázat: Hibás előrejelzések aránya a 7. modellben

Az előrejelzés pontossága a tanulás során 92,9%-os, 9 vizsgált személy esetén sikerrel jelezte előre, hogy nem lesz sérülése, míg egynél tévesen sérülést jelzett. Szintén tréning fázisban 100% pontossággal tudta a sérüléseket azonosítani. A teszt fázisban 83,3%-os pontosságú becslést adott a sérülésekre vonatkozóan.

<table>
<thead>
<tr>
<th>Minta</th>
<th>Megfigyelés</th>
<th>Előrejelzés</th>
<th>Helyes előrejelzések aránya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tréning</td>
<td>0</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Összesen</td>
<td>64,3%</td>
<td>35,7%</td>
</tr>
<tr>
<td>Teszt</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Összesen</td>
<td>100,0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

34. sz. táblázat: Helyes előrejelzések aránya a 7. modellben

Fontossági sorrendet tekintve 100%-ban támaszkodott az előrejelzés kialakításában a kimutatott aszimmetriák számára és ettől nem sokkal marad el a szerepe a guggolás minta mérési eredményeinek.
9. sz. diagram: Az adatfelhasználás fontossági sorrendje a 7. modell neurális
hálózatában

A kipróbált modellek közül a 7. modell teljesített a legeredményesebben a non-
kontakt sérülések előrejelzésében. Tréning fázisban 92,9%, teszt fázisban 83,3%
pontossággal tudja előre megjósolni a sérülések bekövetkeztét az FMS
részpontszámai, aszimmetriák és a CMJ teszt mérési adatai alapján.
6. Megbeszélés, következtetések

Első hipotézisem szerint a sportolók az FMS eredményeinek megfelelő adekvát, FMS-alapú edzésben részesülnek. Az FMS mérési eredményei a TalentX rendszerben kerülnek rögzítésre. Az ehhez kapcsolódó FMS-alapú edzések ugyan nincsenek dokumentálva a rendszerben, azonban a vezető gyógytornász elmondása alapján a gyakorlati kivitelezés megvalósul. Az érintett sportolókat a kondicionális képességek fejlesztéséért felelős erőnléti edző otthon végzendő személyre szabott edzéstervvel látja el. Emellett külön idősávban direkt prevenciós jellegű edzésben is részesítik a sportolókat. Az első hipotézisem helytálló, a megvalósul az adekvát FMS-alapú edzés.

Harmadik hipotézisem az FMS által kimutatott funkcionális deficitek és non-kontakt sérülések összefüggéseire vonatkozott. Ezt az összefüggést Spearman-féle rangkorrelációs vizsgálattal kerestem. Az FMS összpontszámok és a non-kontakt sérülések között a Spearman féle rangkorrelációs vizsgálattal nem találtam összefüggést. Az aszimmetriák esetében nem volt kimutatható korreláció. Az egyes mozgásminták közül csupán két esetben, a jobb lábbal való átlépés és a guggolás minták eredményei mutattak gyenge negatív előjelű korrelációt. Így ezt a hipotéziist elvettem, mert olyan kevés mozgásmintánál találtam összefüggést, hogy az nem reprezentálja a Funkcionális Mozgásminta Szűrés eredményeit.
Negyedik hipotézisem a CMJ mérési eredményei és a non-kontakt sérülések közötti összefüggést feltételezte. A CMJ teszt esetén Pearson -féle korrelációs vizsgálat kimutatta, hogy nincs összefüggés a mérés eredményei és a non-kontakt sérülések között, így negyedik hipotézisemet elvetettem.

A neurális háló alkalmazásával a meglévő adatok alapján előrejelzéseket készítettem a non-kontakt sérülésekre vonatkozóan. Ebben a legjobb eredményt a komplex vizsgálat mutatta. A neurális háló az FMS részpontszámain, az aszimetriák számán és a CMJ mérési eredményeken gyakorolta be az a non-kontakt sérülésekre vonatkozó előrejelzési képességét. A teszt fázis során 83,3% pontossággal jelezte előre a non-kontakt sérülések kialakulását.
7. Összefoglalás

8. Irodalomjegyzék

- **Kasper** István: Funkcionális Mozgásminta Szűrés. Magyar Labdarúgó szövetség előadás anyaga
– Mesterséges Inteligencia Almanach [Online]
 http://mialmanach.mit.bme.hu/fogalomtar/keresztentropia_hibafuggveny
 [2022.04.17.]

– TalentX AMS. Innovatív online platform akadémiák, sportegyesületek számára [Online] https://talentx.hu/funkciok [2022.01.23.]

Mellékletek

1. sz. melléklet: Engedélykérések
2. sz. melléklet: 2021. évi FMS mérési eredményeket közlő táblázat
3. sz. melléklet: 2022. évi FMS mérési eredményeket közlő táblázat
4. sz. melléklet: 2021. januári CMJ mérési eredményeit közlő táblázat
5. sz. melléklet: 2021. július CMJ mérési eredményeit közlő táblázat
6. sz. melléklet: 2021. évi sérüléseket adatait közlő táblázat
I. sz. melléklet: Engedélykérések
Dr. Szabó Zsolt
Orvosigazgató
DVTK Medical
3534 Miskolc, Andrássy u. 94.
Tárgy: Engedélykérés szakdolgozati kutatás végzésére

Tisztelt Dr. Szabó Zsolt Úr!

Petrényi-Petrikné Szász Réka vagyok, a Miskolci Egyetem Egészségügyi Karának, Ápolás és Betegellátás alapszakos IV. évfolyamos gyógytornász hallgatója. A szakdolgozatomhoz szükséges kutatómunkát a DVTK Medicalban szeretném végezni. Kérem Önt, hogy engedélyezze számomra az Ön által vezetett intézményben a vizsgálat elvégzését 2021.11.23-tól 2022.03.31-ig terjedő időszakban.

Kutatás munkacíme: A sportolói állapotfelmérő tesztek eredményei és a sportsérülések közötti összefüggések vizsgálata

Kutatás rövid leírása: Retrospektív longitudinális panelvizsgálat, melyben a 2021. év során keletkezett sportolói állapotfelmérő tesztek eredményeinek az ugyanezen időszakban elszenvedett sportsérülésekkel való összevetése történik. Az elemzés során törekedni szeretném a 30-100 fő közötti elemzésre.

Konzulens: Kató Csaba Miskolci Egyetem, Mestertanár

Miskolc, 2021.11.22.

Bizva kedvező döntésében, tisztelettel:

Petrényi-Petrikné Szász Réka
hallgató e-mail: szaszreka@gmail.com
mobil: +36 20 5848861
Beleegyező nyilatkozat

A „Sportolói állapotfelmérő tesztek eredményei és a sportsérülések közötti összefüggések vizsgálata utánpótlás labdarúgók körében” című kutatásban való részvételhez

Alulírott………………………………………………………………… a kutatásról szóló tájékoztató elolvasása után hozzájárulok ahhoz, hogy a fent megnevezett kutatási programba résztvevőként bevonjanak.

A szakdolgozati téma az intézeti tanszékvezető és az illetékes Regionális Etikai Bizottság által engedélyezett.

Nyilatkozom továbbá arra nézve, hogy a vizsgálat menetéről és céljáról pontos tájékoztatást kaptam. Beleegyezem, hogy az egészségügyi és személyes adataimat az adatkezelési (titoktartási) kötelezettség betartása mellett kutatási célokra felhasználhatják. A vizsgálatban való részvétel teljes mértékben önkéntes.

Tudatában vagyok, hogy részvételemet a vizsgálat során bármikor, indoklás nélkül visszavonhatom és ebből hátrányom nem származik.

A résztvevő adatai

Név: ………

Születési hely és idő: ……………………………………………………………………………………………

Lakcím: ………

……

……

résztevevő aláírása tájékoztatást adó hallgató
Szülői beleegyező nyilatkozat

„Sportolói állapotfelmérő tesztek eredményei és a sportsérülések közötti összefüggések vizsgálata” című kutatásban való részvételhez

Alulírott ………………………………………………………………. (szülő, gondviselő neve) a mellékelt tájékoztató elolvasása után hozzájárulok ahhoz, hogy gyermekem …………………………………………………………. a fent megnevezett kutatási programba résztvevőként bevonják. A szakdolgozati téma az intézeti tanszékvezető és az illetékes Regionális Etikai Bizottság által engedélyezett.

Nyilatkozom továbbá arra nézve, hogy a vizsgálat menetéről és céljáról pontos tájékoztatást kaptam.

A kutatás témavezetőjének, illetve a tájékoztatást adónak a neve, beosztása, munkahelye:

A kutatás témavezetőjének neve: Kató Csaba
Munkahelye, beosztása: Miskolci Egyetem

A tájékoztatást adó neve: Petrényi-Petriné Szász Réka
Munkahelye, beosztása: Miskolci Egyetem Egészségügyi Kar, gyógytornász hallgató

A résztvevő törvényes képviselőjének adatai (18 év alatti résztvevő esetében):

Név: ……
Szül. hely és idő: ……
Lakcím (település): ……

1. sz. melléklet folytatása

A beleegyező nyilatkozat egy példányára igényt tartottam és azt átvettem:

igen □ nem □
<table>
<thead>
<tr>
<th>résztvevő aláírása</th>
<th>tájékoztatást adó hallgató</th>
</tr>
</thead>
<tbody>
<tr>
<td>törvényes képviselő aláírása</td>
<td></td>
</tr>
</tbody>
</table>

Miskolc, 2022………………hó …… nap
TÁJÉKOZTATÓ

Sportolói állapotfelmérő tesztek eredményei és a sportsérülések közötti összefüggések vizsgálata

Tisztelt Résztvevő!

Petrényi-Petrikné Szász Réka vagyok, a Miskolci Egyetem Egészségügyi Karának Ápolás és Betegellátás alapszakos IV. évfolyamos gyógytornász hallgatója. Jelenleg a szakdolgozatom elkészítéséhez szükséges kutatómunkát végzem a Diósgyőri Labdarúgó Sportakadémián. Az Ön együttműködése által szolgáltatott adatokból levont következtetések hozzájárulnak a sportsérülések megelőzéséhez és a fizioterápia tudományos fejlődéséhez.

Kérem, olvassa el figyelmesen az alábbiakat és megkérem, hogy együttműködésével járuljon hozzá kutatási erőfeszítéseimhez és szakdolgozatom sikeres elkészítéséhez.

Kutatásom célja, hogy a sportolói állapotfelmérő tesztek eredményeit összevessem a vizsgált időszakban keletkezett sportsérülésekkel és az ezekből levont következtetések által hatékonyabba tegyen a sportsérülések megelőzését. Ehhez szükségem van az Ön hozzájárulásához, hogy az sportolói állapotfelmérő tesztek adatait kutatásom során felhasználhassam és elemezhessem.

Az adatkezelés módja:
A kutatás során az anonimitás teljes mértékben biztosított.
Tudomásul veszem, hogy a kutatásba történő részvételi beleegyezésem önkéntes és minden befolyástól mentes. A tájékoztatót elolvastam és megértettem, a kérdéseimre megfelelő válaszokat kaptam.
1. sz. melléklet folytatása

Természetesen, amennyiben Ön nem szeretne részt venni, akkor döntését tiszteletben tartom és megnyugtatom, hogy ez a további kezelésére, illetve az Önnel való bánásmódra semmilyen hatással sem lesz. A vizsgálatba való beleegyezés önkéntes és befolyásolástól mentes, azt bármikor akár szóban, akár írásban indokolás nélkül vissza lehet vonni.

Amennyiben az említett vizsgálatokkal kapcsolatban kérdése lenne, úgy kérem, forduljon hozzám bizalommal az alábbi e-mail címen

szaszreka@gmail.com

A tájékoztató egy példányára igényt tartottam és azt átvettem: igen □ nem □

<table>
<thead>
<tr>
<th>résztvevő aláírása</th>
<th>tájékoztatást adó hallgató</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miskolc, 2022. hó nap